The genetic and environmental variance of radial increment in Scots pine of south-eastern Baltic provenances in response to weather extremes

Author:

Matisons Roberts,Krišāns Oskars,Jansone Diāna,Jansons Āris,Zeltiņš Pauls

Abstract

Intensification of weather anomalies, particularly those related to temperature in warming winters and moisture availability, have been identified as the major emerging climatic threats to forest ecosystems in the hemiboreal zone. Considering the large-scale nature of the threats, assisted migration and tree breeding appear as the most promising means for mitigating the climatic risks. However, for successful implementation of such means, information on the genetic control over the weather sensitivity of trees is needed. Local genetic adaptations of populations occur to maximize competitiveness and survival, while the differences in phenotypic plasticity, implying varying genotype by environmental interactions, can be utilized for the acquisition of locally targeted reproductive material. To gain initial (rough) estimates of genetic control and phenotypic plasticity of growth responses to weather anomalies, a set of seven native eastern Baltic provenances differing by productivity in five trials in Latvia and northern Germany were studied. Tree-ring widths were measured for 10–15 trees per provenance per trial. Relative growth changes and pointer year values were calculated to link changes in increment with weather anomalies and to estimate heritability on an annual basis by the methods of quantitative genetics. During the analysed period (1987–2017), four to seven trial- and provenance-specific pointer years (common relative growth changes) were estimated, which were mainly triggered by co-occurring anomalies in moisture availability and winter thermal regime. This implied resilience of the studied trees to singular weather anomalies, suggesting their adaptability. Furthermore, the heritability estimates peaked one to two years after the pointer years, implying that growth recovery and hence resilience rather than resistance was genetically controlled. Still, local variability of pointer years and heritability estimates portrayed explicit phenotypic plasticity of responses, implying the potential for breeding to locally improve weather tolerance of growth. Keywords: Pinus sylvestris; local adaptation; phenotypic plasticity; growth recovery; tree-ring width; pointer years 

Publisher

Baltic Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3