Pathogenesis of diabetic macular edema: role of the glial factor (literature review and own data)

Author:

Kyryliuk M.L.ORCID,Suk S.A.ORCID

Abstract

The review presents modern data on the pathogenesis of diabetic macular edema. Today, a new understanding of the pathophysiology of diabetic retinal lesions includes structural dysfunction of the neurovascular unit (NVU) of the retina. NVU includes astrocytes and Müller cells, it is a physical and biochemical link between neurons, glia, vascular network in situ, acts as an interface between neurons and the vascular system, and is a key regulator of neuronal metabolism. The close interdependence of glial cells, pericytes and neurons contributes to the formation of a barrier between the blood and the retina, which controls the flow of fluid and hemotransmissive metabolites into the glial parenchyma of eye tissue. Glial components of NVU contribute to the survival of neuronal ganglion cells and photoreceptors, stabilization of the retinal structure, and modulation of inflammatory and immune reactions. It has been shown that intercellular interactions between blood vessels and neurons play a critical role in the formation of blood-retinal barrier whose activity is modulated by the state of retinal endothelial communications. In diabetes, the blood-retinal barrier breaks down already at the early stage of diabetic retino­pathy, changing the structure and function of most types of cells in the retina; however, the molecular mechanisms of this pathological process in diabetes are not sufficiently studied and require the search for new therapeutic strategies, in particular, with the participation of clusterin. Emphasis is placed on the significance of dysfunction in the neurovascular unit of the retina for the deve­lopment of complications in diabetes. Increased attention is paid to microglial activation, Müller cell dysfunction, damage to the blood-retinal barrier, as well as the role of clusterin and fractalkine in barrier cytoprotection.

Publisher

Publishing House Zaslavsky

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3