The value of the posterior ligamentous complex in traumatic injury of thoracolumbar junction. Part 1. Morphology and biomechanics

Author:

Nekhlopochyn O.S.,Verbov V.V.,Cheshuk I.V.,Vorodi M.V.

Abstract

According to modern concepts, one of the basic criteria for the stability of the spinal motion segment in case of its traumatic damage is the integrity of the posterior ligamentous complex (PLC). Regarding the thoracolumbar junction (TLJ) as a zone that is most vulnerable to traumatic injuries, the Thoracolumbar Injury Classification and Severity Score and the clinically oriented AO Spine Thoracolumbar Spine Injury Classification System are used in determining therapeutic approaches in which the state of the thoracic spine is one of three key parameters. The term PLC was first proposed in 1963 by F.W. Holdsworth. However, only the widespread introduction of magnetic resonance imaging into clinical practice made it possible to fully reveal the informativeness of the specified parameter. The complex includes the interspinous, supraspinous ligaments, ligamentum flavum and facet joint capsule. The purpose of the review is to organize modern ideas about the morphology, biomechanical features, clinical significance, and diagnostic possibilities of detecting damage to the PLC in traumatic injuries of the TLJ area. In the first part, the morphological and biomechanical features of the PLC of the TLJ zone are considered in detail. When describing the morphology of some ligaments, the main attention is paid to their length, fixation zones, and certain layers, if such are distinguished. In addition, the relative anatomical location of the considered structures was taken into account. Histological features are indicated only in terms of their biomechanical significance. The analysis of literature data made it possible to organize the data characterizing the biomechanical parameters of each ligament of the PLC for each spinal motion segment of the area under consideration. Stiffness indicators, breaking force, fracture energy, strength and deformation limits, maximum deformation and elastic modulus were taken into account. The features of the load-deformation curve of the TLJ ligaments and methods of calculating the nonlinear change in the stiffness of each ligament of the PLC within the limits of physiological loads are considered. The phenomenon of preload and its clinical significance are described. Some aspects of the interaction between the elements of the passive stabilization system under different load patterns are considered. The data presented in the first part of the review can be useful for a general understanding of the principles of biomechanics of the spinal motion segment and may be used in the construction of highly detailed computer models.

Publisher

Publishing House Zaslavsky

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3