Classification of 3D-DWT Features of Brain Tumours with SVM

Author:

Barstugan MucahidORCID

Abstract

Brain tumours are one of the most challenging medical conditions to diagnose and treat. Accurate and timely classification of brain tumours is critical for effective treatment planning and patient management. Machine learning algorithms have shown great promise in improving the accuracy of brain tumour classification. This study implemented high-grade glioma (HGG) and low-grade glioma (LGG) classification on four different 3D-MRI (magnetic resonance imaging) scans (FLAIR, T1, T1c, T2). By using four different scans, 15 different combinations were created for classification process. 3D Discrete Wavelet Transform was used to transform tumour images for feature extraction stage. 36 different wavelet types were used for image transformation. First Order Statistics (mean, variance, kurtosis, skewness, entropy, energy) were extracted from transformed images of 36 wavelet types. Support Vector Machines (SVM) algorithm classified the FOS features that were obtained on BraTS 2017 dataset. The 2-fold, 5-fold, and 10-fold cross-validations are implemented and six metrics (sensitivity, specificity, accuracy, precision, F1-score, AUC) evaluated the performance of proposed method. Consequently, proposed method achieved remarkable scores of 95.23% (sensitivity), 78.81% (specificity), 90.89% (accuracy), 92.59% (precision), 93.89% (F1-score), and 87.02% (AUC) for HGG/LGG classification of 3D brain MRI data on T1+T1c+T2 combination by 2-fold cross validation.

Publisher

Orclever Science and Research Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3