Analysis of Dual-Band Plasmonic Nanoantenna with Ultra-Thin Circular Gold Layers in Visible Region

Author:

Demirtas HayriyeORCID,Turkmen MustafaORCID,Aslan EkinORCID,Aslan ErdemORCID

Abstract

Aperture-based plasmonic nanoantenna design with dual-band resonance obtained in the region very close to the green wavelength in the spectrum between 400 nm and 700 nm, which can be used in non-invasive biological sensing applications in the future, is presented. In this circular aperture-based nanoantenna design, the effect of changing the material thickness and dielectric medium parameters on the antenna response is investigated. In the nanoantenna design using a double-layer conductive gold layer, both of thickness values are reduced to 5 nm. It is observed that this thickness value exhibits a very strong transmittance response compared to the thicker gold layer values used in the visible region. In this nanoantenna, which exhibits dual band properties at 508 and 551 nm wavelengths, the strongest transmittance peaks are obtained for 5 nm thickness of gold, 100 nm thickness of magnesium fluoride and the 100 nm radius of the circular aperture. In order to contribute to spectroscopic sensing applications, hot spots locations and near field enhancement distribution maps are also examined.

Publisher

Orclever Science and Research Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3