Abstract
The subject of wearable electronics is expanding quickly, and it has just lately begun to provide profitable commercial items to the consumer electronics market. It is anticipated that the use of biopotential signals in wearable systems as either biofeedback or command commands will revolutionize.There are numerous technologies, such as brain-computer interfaces, point-of-care health monitoring systems, rehabilitation tools. Since electrodes are seen to be a crucial component of such items, they have been researched for about ten years, which has led to the development of textile electrodes.In this paper , wearable devices for sport is studied with detecting vital parameters. There are a few sensors such as ECG and IMU based acceleration. Smart textile products are used for testing and taking data purpose
Publisher
Orclever Science and Research Group
Reference22 articles.
1. Tao, X. Wearable Electronics and Photonics; Elsevier: Amsterdam, The Netherlands, 2005 .
2. Wearable Electronics and Technology Market by Applications. Available online: http://www. marketsandmarkets.com/Market-Reports/wearable-electronics-market-983.html (accessed on 27 April 2019).
3. Hu, E.; Kaynak, A.; Li, Y. Development of a cooling fabric from conducting polymer coated fibres: Proof of concept. Synth. Met. 2005, 150, 139–143.
4. Khan, A.; Hussain, M.; Nur, O.; Willander, M. Fabrication of zinc oxide nanoneedles on conductive textile for harvesting piezoelectric potential. Chem. Phys. Lett. 2014, 612, 62–67.
5. Mehta, D.D.; Nazir, N.T.; Trohman, R.G.; Volgman, A.S. Single-lead portable ECG devices: Perceptions and clinical accuracy compared to conventional cardiac monitoring. J. Electrocardiol. 2015, 48, 710–716.