Secure and Efficient NVM Usage for Embedded Systems Using AES-128 and Huffman Compression

Author:

Karacali HuseyinORCID,Donum NevzatORCID,Cebel EfecanORCID

Abstract

Embedded systems are customized systems designed to meet functionality and specific usage purposes. These systems often grapple with challenges such as power interruptions, limited memory space, and the expectation of a long operational lifespan. It is in this context that Non-Volatile Memory (NVM) plays a vital role. NVM is a type of memory that ensures data persistence even in situations of temporary power loss or signal interruptions. Efficiently utilizing NVM is a critical necessity for the effectiveness and reliability of these systems. Efficient utilization of NVM necessitates the effective management of write and read cycles. Previous studies have demonstrated the efficient utilization of NVM sectors by ensuring that no garbage bytes remain unallocated. Previous studies have demonstrated the efficient utilization of NVM by compressing the data to be written into NVM using the Huffman compression algorithm, and filling sectors without any residual garbage bytes. This paper aspires to advance beyond prior research by integrating the Advanced Encryption Standard (AES-128) block encryption algorithm, aiming to optimize the utilization of NVM to a greater extent. The AES-128 algorithm provides data security with encryption and decryption operations. By applying AES-128 encryption to the data before writing it to the NVM, this work adds a data security layer to the developed software module. Data is divided into blocks using this algorithm. Each block is encrypted independently and then reassembled. The encryption process includes key management, substitution-permutation network layers, and multiple rounds, all of which make substantial contributions to high-level data security. The resulting encrypted data is compressed using the Huffman compression algorithm. This process enhances both the security and efficiency of data storage. The data is written to NVM with maximum efficiency, ensuring that no residual garbage bytes remain, upon the completion of the encryption and compression processes. This study surpasses previous research by enhancing storage security and efficiency through these processes. Moreover, the developed secure and efficient NVM usage, as it fills the NVM with data without leaving any garbage bytes, results in slower processing speed compared to standard NVM usage. Therefore, in future research, interventions with code optimization techniques can be applied to the developed algorithms to enhance write and read speeds.

Publisher

Orclever Science and Research Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cryptographic Enhancement of Named Pipes for Secure Process Communication;The European Journal of Research and Development;2024-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3