Abstract
В результате обобщения на $n$-значный случай алгоритма конструирования литеральных паранепротиворечивых/параполных логик посредством комбинирования изоморфов классической логики получаем классы паранепротиворечивых, параполных и паранормальных логик. Паранормальные логики – логики, которые одновременно и паранепротиворечивы, и параполны. В качестве критерия паранепротиворечивости логики взят критерий неверифицируемости закона Дунса Скота в соотвествующей логической матрице. В качестве критерия параполноты логики взят критерий неверифицируемости закона Клавия в соотвествующей логической матрице. В статье рассмотрен тип $n$-значных логических матриц, определеяющих паранормальные системы. Исследован вопрос о классе тавтологий, определяемом этим типом матриц. Доказано, по классу тавтологий исследуемые матрицы совпадают с представленными в литературе четырехзначными паранормальными матрицами логик $\mathbf V$, $\mathbf{I^1P^1}$.
Publisher
Institute of Philosophy, Russian Academy of Sciences