Anti-cancer Potential of Hydatid Cyst-Derived Antigens: In Vivo Insights

Author:

Hosseini ZeinabORCID,Jamali MohaddesehORCID,Sadat Hasheminezhad NikooORCID,Razmi RaziehORCID,Abbasi RezvanORCID,Jahani NegarORCID,Mohammadian Mahsa

Abstract

The global healthcare challenge of cancer remains challenging, requiring innovative approaches to identify potential anticancer agents. The intriguing anti-tumor properties of hydatid cysts produced in their larval stage by Echinococcus granulosus (E. granulosus) have attracted the attention of many scientists in recent years. This review aimed to delve deeper into the in vivo anticancer effects of hydatid cyst-derived antigens and shed light on their mechanisms of action and therapeutic implications for various cancer types. Several bioactive molecules in E. granulosus antigens have shown significant anti-cancer activity in vivo. Several studies have shown that administering these antigens reduced tumor size while increasing overall survival in breast cancer models. The immune response against tumor cells in lung cancer murine models has also been enhanced by E. granulosus antigens, such as antigen B, leading to the regression of tumors and enhanced immunity. Colon cancer cells are sensitized to these antigens as indicated by in vivo studies, rendering standard chemotherapy more effective at inhibiting tumor growth. E. granulosus antigens also reduce tumor metastasis when applied to in vivo melanoma models. E. granulosus antigens have demonstrated in vivo efficacy as a potential anticancer agent, underscoring their potential as valuable therapeutic agents. There is still much to be discovered about the exact mechanisms of these antigens and their clinical applicability. However, the impressive results observed across a wide range of cancer types underscore the significance of further research into the antigens to overcome cancer in vivo. In conclusion, animal model studies reveal the promising potential of E. granulosus antigens, particularly hydatid cyst fluid, in inhibiting tumor growth in colon, breast, melanoma, and lung cancers through immune-mediated mechanisms and apoptosis induction. These findings open up new avenues for cancer therapy and immunotherapy research, emphasizing the role of parasite antigens in combatting various cancer types.

Publisher

Rovedar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3