1. 1. Jomehzadeh N, Afzali M, Ahmadi K, Salmanzadeh S, Mehr F. Antimicrobial resistance patterns and prevalence of integrons in Shigella species isolated from children with diarrhea in southwest Iran. Asian Pac J Trop Med. 2021;14(2):78-82. [DOI: 10.4103/1995-7645.281529] 2. Amini K, Konkori M. Identification of Broad-Spectrum Beta-lactamase CTX-M-2, CTX-M-8, and Ampc-dependent CMY Genes in Shigella sonnei Isolated from Pediatric Diarrhea Specimens by Multiplex-PCR and Antibiotic Resistance Pattern Determination. Iran J Med Microbiol. 2020
2. 14 (5) :501-511. ( persian) [DOI: 10.30699/ijmm.14.5.501] 3. Zhi S, Parsons BD, Szelewicki J, Yuen YTK, Fach P, et al. Identification of Shiga-Toxin-Producing Shigella Infections in Travel and Non-Travel Related Cases in Alberta, Canada. Toxins (Basel). 2021;13(11):755. [DOI;10.3390/toxins13110755 ] 4. Ranjbar R, Soltan Dallal MM, Talebi M, Pourshafie MR. Increased isolation and characterization of Shigella sonnei obtained from hospitalized children in Tehran, Iran. J Health Popul Nutr. 2008;26(4):426-30. [DOI
3. 10.3329/jhpn.v26i4.1884] 5. Ke X, Gu B, Pan S, Tong M. Epidemiology and molecular mechanism of integron-mediated antibiotic resistance in Shigella. Arch Microbiol. 2011;193(11):767-74. [DOI :10.1007/s00203-011-0744-3] 6. Kahsay AG, Muthupandian S. A review on Sero diversity and antimicrobial resistance patterns of Shigella species in Africa, Asia and South America, 2001-2014. BMC Res Notes. 2016;9(1):422. [DOI: 10.1186/s13104-016-2236-7] 7. Afshari N, Bakhshi B, Mahmoudi aznaveh A, Fallah F, Rahbar M, et al. Investigation of prevalence of Shigella sonnei in children with diarrhea admitted to two hospital Emam Khomeini and Milad in Tehran in 1391 with Antimicrobial susceptibility of isolates. Iran J Med Microbiol. 2016
4. 10 (2) :16-22. ( persian) [ URL: http://ijmm.ir/article-1-380-en.html 8. Tran Van Nhieu G, Sansonetti PJ. Mechanism of Shigella entry into epithelial cells. Curr Opin Mirobiol. 1999;2(1):51-5. [DOI: 10.1016/s1369-5274(99)80009-5] 9. Nasrollahi Boroujeni F, Deldar A A. The Study of the Stable Expression of IpaB, the Virulence Factor in Shigella Sonnei, in Terms of Simultaneous Expression of Chaperone IpgC. Iran J Med Microbiol. 2018
5. 12 (4) :260-268. ( persian) [URL: http://ijmm.ir/article-1-827-en.html] 10. Muthuirulandi Sethuvel DP, Veeraraghavan B, Vasudevan K, Devanga Ragupathi NK, Murugan D, et al. Complete genome analysis of clinical Shigella strains reveals plasmid pSS1653 with resistance determinants: a triumph of hybrid approach. Gut Pathogens. 2019;11(1):55. 11. Ranjbar R, Farahani A. Shigella: Antibiotic-Resistance Mechanisms And New Horizons For Treatment. Infection and drug resistance. Infect Drug Resist. 2019;12:3137-67. [DOI: 10.2147/IDR.S219755] 12. Soleimani N. Molecular Biology of Aminoglycoside and Relationship of Aminoglycoside Modifying Enzymes with Altering Resistance. AUMJ. 2017;6(4):227-40. ( persian) [DOI: 10.29252/aums.6.4.227] 13. Silva P, Palma J, Souza N, Melo de Moura H, Perecmanis S, et al. Isolation and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli found in chilled chicken carcasses in the Federal District Region and surrounding areas. Semina. 2019;40:2247. [DOI: http://dx.doi.org/10.5433/1679-0359.2019v40n5Supl1p2247] 14. Garneau-Tsodikova S, Labby KJ. Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. MedChemComm. 2016;7(1):11-27. [DOI: 10.1039/C5MD00344J] 15. Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, et al. Curcumin Nanoparticles as Promising Therapeutic Agents for Drug Targets. Molecules. 2021;26(16). DOI: 10.3390/molecules26164998 16. Gopal J, Muthu M, Chun S-C. One-step, ultrasonication-mobilized, solvent-free extraction/synthesis of nanocurcumin from turmeric. RSC Advances. 2015;5(60):48391-8. 17. Rai M, Ingle AP, Pandit R, Paralikar P, Anasane N, et al. Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities. Expert Rev Anti Infect Ther. 2020;18(4):367-79. [DOI: 10.1080/14787210.2020.1730815] 18. Sharifi S, Fathi N, Memar MY, Hosseiniyan Khatibi SM, Khalilov R, et al. Anti-microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytother Res. 2020;34(8):1926-46. [ DOI: 10.1002/ptr.6658] 19. Kareem SM, Mahmood SS, Hindi NK. Effects of Curcumin and Silymarin on the Shigella dysenteriae and Campylobacter jejuni In vitro. J Gastrointest Cancer. 2020;51(3):824-8. [ DOI: 10.1007/s12029-019-00301-1] 20. Werner G, Hildebrandt B, Witte W. Aminoglycoside-Streptothricin Resistance Gene Cluster aadE-sat4-aphA-3 Disseminated among Multiresistant Isolates of Enterococcus faecium.Antimicrob Agent Chemother. 2001;45(11):3267-9. [DOI: 10.1128/AAC.45.11.3267-3269.2001] 21. Udou T. Dissemination of nosocomial multiple-aminoglycoside-resistant Staphylococcus aureus caused by horizontal transfer of the resistance determinant (aacA/aphD) and clonal spread of resistant strains. Am J Infecti Control. 2004;32(4):215-9. [DOI: 10.1016/j.ajic.2003.11.002 22. Gião J, Leão C, Albuquerque T, Clemente L, Amaro A. Antimicrobial Susceptibility of Enterococcus Isolates from Cattle and Pigs in Portugal: Linezolid Resistance Genes optrA and poxtA. Antibiotics. 2022;11(5):615. [ DOI: 10.3390/antibiotics11050615] 23. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2012;40(Database issue):D13-D25. [DOI: 10.1093/nar/gkp967] 24. Alizadeh Sarvandani S, Amini K, Saffarian P. Evaluation of antimicrobial activity of Curcumin nanoparticles on the gene expression of the enterococcal surface protein, Esp, involved in biofilm formation of Enterococcus Faecalis. Razi Journal of Medical Sciences. 2019;26(9):39-46. ( persian) 25. Vaziri F, Peerayeh SN, Nejad QB, Farhadian A. The prevalence of aminoglycoside-modifying enzyme genes (aac (6')-I, aac (6')-II, ant (2")-I, aph (3')-VI) in Pseudomonas aeruginosa. Clinics (Sao Paulo). 2011;66(9):1519-22. [ DOI: 10.1590/s1807-59322011000900002] 26. Strommenger B, Kettlitz C, Werner G, Witte W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clin Microbiol. 2003;41(9):4089-94. [DOI: 10.1128/JCM.41.9.4089-4094.2003] 27. Moniri R, Farahani RK, Shajari G, Shirazi MN, Ghasemi A. Molecular epidemiology of aminoglycosides resistance in acinetobacter spp. With emergence of multidrug-resistant strains. Iran J Public Health. 2010;39(2):63-8. 28. De R, Kundu P, Swarnakar S, Ramamurthy T, Chowdhury A, et al. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrob Agents chemother. 2009;53(4):1592-7. [DOI: 10.1128/AAC.01242-08] 29. Shariati A, Asadian E, Fallah F, Azimi T, Hashemi A, et al. Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran. Infec Drug Resist. 2019;12:2223-35. [DOI: 10.2147/IDR.S213200] 30. hang Z, Liao L, Moore J, Wu T, Wang Z. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem. 2009