1. 1. Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome. 2020;8(1):1-7. 2. Dalla Via A, Gargari G, Taverniti V, Rondini G, Velardi I, Gambaro V, et al. Urinary TMAO levels are associated with the taxonomic composition of the gut microbiota and with the choline TMA-lyase gene (cutC) harbored by Enterobacteriaceae. Nutrients. 2020;12(1):62. 3. Jonsson AL, Bäckhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017;14(2):79-87. 4. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011 Apr;472(7341):57-63. 5. Zhu Y, Li Q, Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N‐oxide. APMIS. 2020;128(5):353-66. 6. Jin M, Qian Z, Yin J, Xu W, Zhou X. The role of intestinal microbiota in cardiovascular disease. J. Cell. Mol. Med. 2019 Apr;23(4):2343-50. 7. Mobley HL, Belas R. Swarming and pathogenicity of Proteus mirabilis in the urinary tract. Trends Microbiol. 1995;3(7):280-4. 8. Hamilton AL, Kamm MA, Ng SC, Morrison M. Proteus spp. as putative gastrointestinal pathogens. Clin. Microbiol. Rev. 2018;31(3):e00085-17. 9. Jameson E, Fu T, Brown IR, Paszkiewicz K, Purdy KJ, Frank S, Chen Y. Anaerobic choline metabolism in microcompartments promotes growth and swarming of Proteus mirabilis. Environ. Microbiol. 2016;18(9):2886-98. 10. Schaffer JN, Pearson MM. Proteus mirabilis and urinary tract infections. Microbiol. Spectr 3: UTI-0017-2013. 11. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M. et al. Human gut microbiome viewed across age and geography. nature. 2012;486(7402):222-7. 12. Bergey, D. H., Noel R. Krieg, and John G. Holt. Bergey's Manual of Systematic Bacteriology. Baltimore, MD: Williams and Wilkins, 1984. 13. Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition. New York: W H Freeman
2. 2002. 14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265-75.. 15. Al-Tubuly AA. SDS-PAGE and western blotting. In Diagnostic and Therapeutic Antibodies 2000 (pp. 391-405). Humana, Totowa, NJ. 16. Appleton HD, La Du BN, Levy BB, Steele JM, Brodie BB. A chemical method for the determination of free choline in plasma. J. Biol. Chem. 1953;205(2):803-13. 17. Wang Z, Tang WW, Buffa JA, Fu X, Britt EB, Koeth RA, Levison BS, Fan Y, Wu Y, Hazen SL. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 2014;35(14):904-10. 18. Wekell JC, Barnett H. New method for analysis of trimethylamine oxide using ferrous sulfate and EDTA. J. Food Sci. 1991;56(1):132-5. 19. Moraes LG, Rocha RS, Menegazzo LM, Araújo EB, Yukimito K, Moraes JC. Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. J. Appl. Oral Sci. 2008;16:145-9. 20. Kalnins G, Kuka J, Grinberga S, Makrecka-Kuka M, Liepinsh E, Dambrova M et al. Structure and function of CutC choline lyase from human microbiota bacterium Klebsiella pneumoniae. J Biol Chem. 2015;290(35):21732-40. 21. Cedola F, Coras R, Sanchez-Lopez E, Mateo L, Pedersen A, Brandy-Garcia A. et al. Choline metabolite is associated with inflammation in arthritis in the elderly. Arthritis Rheumatol. 2019 Oct 1 (Vol. 71). 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: WILEY. 22. Chan MM, Yang X, Wang H, Saaoud F, Sun Y, Fong D. The microbial metabolite trimethylamine N-oxide links vascular dysfunctions and the autoimmune disease rheumatoid arthritis. Nutrients. 2019;11(8):1821. 23. Mazidi M, Katsiki N, Mikhailidis DP, Banach M. Dietary choline is positively related to overall and cause-specific mortality: results from individuals of the National Health and Nutrition Examination Survey and pooling prospective data. Br J Nutr. 2019;122(11):1262-70. 24. Dambrova M, Latkovskis G, Kuka J, Strele I, Konrade I, Grinberga S et al. Diabetes is associated with higher trimethylamine N-oxide plasma levels. Exp. Clin. Endocrinol. Diabetes. 2016;124(04):251-6. 25. Dong Z, Liang Z, Guo M, Hu S, Shen Z, Hai X. The association between plasma levels of trimethylamine N-oxide and the risk of coronary heart disease in Chinese patients with or without type 2 diabetes mellitus. Dis. Markers. 2018;2018. 26. Liu W, Balu N, Canton G, Hippe DS, Watase H, Waterton JC et al. Understanding atherosclerosis through an osteoarthritis data set: From knee to vessel. Arterioscler. Thromb. Vasc. Biol. 2019;39(6):1018-25. 27. Danne O, Möckel M. Choline in acute coronary syndrome: an emerging biomarker with implications for the integrated assessment of plaque vulnerability. Expert Rev. Mol. Diagn. 2010 Mar 1;10(2):159-71. 28. Coras R, Kavanaugh A, Boyd T, Huynh D, Lagerborg KA, Xu YJ et al. Choline metabolite, trimethylamine N-oxide (TMAO), is associated with inflammation in psoriatic arthritis. Clin Exp Rheumatol. 2019;37(3):481. 29. Wang H, Jia Y, Wang X, Ma J, Jing Y. Physico-chemical Properties of Magnesium Ionic Liquid Analogous. J Chil Chem. 2012;57(3):1208-12. 30. Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res. 2020;127(4):553-70. 31. Xu H, Duan Z, Miao C, Geng S, Jin Y. Development of a diagnosis model for coronary artery disease. Indian Heart J. 2017;69(5):634-9. 32. Bishnoi S, Kaushik RM, Rawat A, Dhar M, Kaushik R. Risk factors for angiographically proven coronary artery disease in women in India. Health Care Women Int. 2016;37(12):1357-72.
3. Gut microbiota and cardiovascular disease: opportunities and challenges
4. Urinary TMAO Levels Are Associated with the Taxonomic Composition of the Gut Microbiota and with the Choline TMA-Lyase Gene (cutC) Harbored by Enterobacteriaceae
5. Role of gut microbiota in atherosclerosis