1. 1. Caliskan E, Say Coskun US, Dulger G, Kilincel O, Ankarali H, Sahin I. Investigation of plasmid mediated AmpC beta-lactamases in Escherichia coli and Klebsiella pneumoniae isolates by phenotypic and genotypic. J Pak Med Assoc. 2019;69(6):834-9. 2. Abdalhamid B, Albunayan S, Shaikh A, Elhadi N, Aljindan R. Prevalence study of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking inducible ampC from Saudi hospitals. J. Med. Microbiol. 2017;66(9):1286-90. 3. Rensing KL, Abdallah H, Koek A, Elmowalid GA, Vandenbroucke-Grauls CM, Al Naiemi N, et al. Prevalence of plasmid-mediated AmpC in Enterobacteriaceae isolated from humans and from retail meat in Zagazig, Egypt. Antimicrob Resist Infect Control. 2019;8(1):1-8. 4. Govindaswamy A, Bajpai V, Batra P, Malhotra R, Mathur P. Phenotypic and molecular characterization of extended spectrum beta lactamase and AmpC beta lactamases in Escherichia coli from a tertiary care centre in India. J Patient Saf. January 2018. 6(2):54 5. Correa-Martínez CL, Idelevich EA, Sparbier K, Kostrzewa M, Becker K. Rapid detection of extended-spectrum β-lactamases (ESBL) and AmpC β-lactamases in Enterobacterales: development of a screening panel using the MALDI-TOF MS-based direct-on-target microdroplet growth assay. FRONT MICROBIOL. 2019;10:13. 6. Mohd Khari FI, Karunakaran R, Rosli R, Tee Tay S. Genotypic and phenotypic detection of AmpC β-lactamases in Enterobacter spp. isolated from a teaching hospital in Malaysia. PLoS One. 2016;11(3):e0150643. 7. Aryal SC, Upreti MK, Sah AK, Ansari M, Nepal K, Dhungel B, et al. Plasmid-mediated AmpC β-lactamase CITM and DHAM genes among gram-negative clinical isolates. Infect Drug Resist. 2020;13:4249. 8. Othman H, Abd El Hamid D. Evaluation of Phenotypic Methods for Detection of Plasmid-Mediated AmpC β-Lactamases (PMABLs) among Klebsiella pneumoniae. Int. j. curr. microbiol. appl. sci. 2016;5:230-9. 9. Ibrahim ME, Abbas M, Al-Shahrai AM, Elamin BK. Phenotypic characterization and antibiotic resistance patterns of extended-spectrum β-Lactamase-and AmpC β-lactamase-producing Gram-negative bacteria in a referral hospital, Saudi Arabia. Can. J Infect Dis Med Microbiol. 2019;2019. 10. Reuland EA, Halaby T, Hays JP, de Jongh DM, Snetselaar HD, Van Keulen M, et al. Plasmid-mediated AmpC: prevalence in community-acquired isolates in Amsterdam, the Netherlands, and risk factors for carriage. PLoS One. 2015;10(1):e0113033. 11. W.Procop G, Church DL, Hall GS, Janda WM. Koneman's Color Atlas and Textbook of Diagnostic Microbiology. 7th ed. philadelphia: Wolters Kluwer Health
2. 2017. 1412 p. 12. Ghonaim R, Moaety H. Comparison between Multiplex PCR and Phenotypic Detection Methods for Identifying. AmpC B. Clin Microbiol 2018, 7:3. 13. Tamma PD, Doi Y, Bonomo RA, Johnson JK, Simner PJ, RA ARLGTPDYB. A primer on AmpC β-lactamases: necessary knowledge for an increasingly multidrug-resistant world. Clin. Infect. Dis. 2019;69(8):1446-55. 14. Wassef M, Behiry I, Younan M, El Guindy N, Mostafa S, Abada E. Genotypic Identification of AmpC β-Lactamases Production in Gram-Negative Bacilli Isolates. Jundishapur J.Microbiol. 2014;7(1):e8556. 15. Zorgani A, Daw H, Sufya N, Bashein A, Elahmer O, Chouchani C. Co-occurrence of plasmid-mediated AmpC β-lactamase activity among Klebsiella pneumoniae and Escherichia Coli. Open Microbiol. J. 2017;11:195. 16. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing;Twenty-fourth informational supplement Cd-SCaLSI, Wayne, PA. 2015. 17. Coudron PE, Moland ES, Thomson KS. Occurrence and detection of AmpC beta-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. J. Clin. Microbiol. 2000;38(5):1791-6. 18. Mohamudha PR, Harish B, Parija S. AmpC beta lactamases among Gram negative clinical isolates from a tertiary hospital, South India. Brazilian Journal of Microbiology. 2010;41(3):596-602. 19. Jacoby GA. AmpC β-lactamases. Clin. Microbiol. Rev. 2009;22(1):161-82. 20. Shahandeh Z, Sadighian F, Beigom Rekabpor K. Phenotypic Detection of ESBL, MBL (IMP-1), and AmpC Enzymes, and Their Coexistence in Enterobacter and Klebsiella Species Isolated FromClinical Specimens. Int J Enteric Pathog. 2016;4(2):1-7. 21. Yagi T, Wachino J-i, Kurokawa H, Suzuki S, Yamane K, Doi Y, et al. Practical methods using boronic acid compounds for identification of class C β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. J. Clin. Microbiol. 2005;43(6):2551-8. 22. Shahandeh Z, Sadighian F, Rekabpou KB. Phenotypic study of Extended-spectrum beta-lactamase, AmpC and Carbapenemase among E. coli clinical isolates in affiliated hospitals of Babol University of Medical Sciences. Int. j. health syst. disaster manag.2015;3(2):74. 23. Rudresh S, Nagarathnamma T. Two simple modifications of modified three-dimensional extract test for detection of AmpC [beta]-lactamases among the members of family Enterobacteriaceae. Chron. young sci. 2011;2(1):43-46. 24. Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010;65(3):490-5. 25.Ghanavati R, Darban-Sarokhalil D, Navab-Moghadam F, Kazemian H, Irajian G, Razavi S. First report of coexistence of AmpC beta-lactamase genes in Klebsiella pneumoniae strains isolated from burn patients. Acta microbiologica et immunologica Hungarica. 2017;64(4):455-62. 26. Ghanavati R, Emaneini M, Kalantar-Neyestanaki D, Maraji AS, Dalvand M, Beigverdi R, et al. Clonal relation and antimicrobial resistance pattern of extended-spectrum β-lactamase-and AmpC β-lactamase-producing Enterobacter spp. isolated from different clinical samples in Tehran, Iran. Revista da Sociedade Brasileira de Medicina Tropical. 2018;51:88-93. 27. Robatjazi S, Nikkhahi F, Niazadeh M, Marashi SMA, Peymani A, Javadi A, et al. Phenotypic identification and genotypic characterization of plasmid-mediated AmpC β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Iran. Current Microbiology. 2021;78(6):2317-23. 28. Reuland EA, Hays JP, de Jongh DM, Abdelrehim E, Willemsen I, Kluytmans JA, et al. Detection and occurrence of plasmid-mediated AmpC in highly resistant gram-negative rods. PloS one. 2014;9(3):e91396. 29. Yilmaz N, Agus N, Bozcal E, Oner O, Uzel A. Detection of plasmid-mediated AmpC β-lactamase in Escherichia coli and Klebsiella pneumoniae. Indian J. Med. Microbiol..53:(1)31;2013. 30. Gharout-Sait A, Touati A, Guillard T, Brasme L, de Champs C. Molecular characterization and epidemiology of cefoxitin resistance among Enterobacteriaceae lacking inducible chromosomal ampC genes from hospitalized and non-hospitalized patients in Algeria: description of new sequence type in Klebsiella pneumoniae isolates. Braz J Infect Dis. 2015;19(2):187-95. 31. Ye Q, Wu Q, Zhang S, Zhang J, Yang G, Wang H, et al. Antibiotic-resistant extended spectrum ss-lactamase-and plasmid-mediated AmpC-producing enterobacteriaceae isolated from retail food products and the pearl river in Guangzhou, China. FRONT MICROBIOL 2017;8:96. 32. Uzunović S, Ibrahimagić A, Hodžić D, Bedenić B. Molecular epidemiology and antimicrobial susceptibility of AmpC-and/or extended-spectrum (ESBL) ß-lactamase-producing Proteus spp. clinical isolates in Zenica-Doboj Canton, Bosnia and Herzegovina. Med Glas (Zenica). 2016;1(2):103.
3. Caliskan E, Say Coskun US, Dulger G, Kilincel O, Ankarali H, Sahin I. Investigation of plasmid mediated AmpC beta-lactamases in Escherichia coli and Klebsiella pneumoniae isolates by phenotypic and genotypic. J Pak Med Assoc. 2019;69(6):834-9.
4. Prevalence study of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking inducible ampC from Saudi hospitals
5. Prevalence of plasmid-mediated AmpC in Enterobacteriaceae isolated from humans and from retail meat in Zagazig, Egypt