A molecular New Update on the Biofilm Production and Carbapenem Resistance Mechanisms in Clinical Pseudomonas aeruginosa Isolates

Author:

Ramazani Raziyeh,Izadi Amoli Rabeeh,Taghizadeh Armaki Mojtaba,Pournajaf Abazar,Kaboosi Hami, , , , ,

Publisher

Farname, Inc.

Subject

Infectious Diseases,Microbiology (medical),Microbiology

Reference31 articles.

1. 1- Chaudhury N, Paul R, Misra RN, Chaudhuri SS, Mirza S, Sen S. Evaluating the trends of bloodstream infections by nonfermenting Gram negative Bacilli among the patients in a tertiary Care Hospital of western part of India and its antibiogram. Int J Curr Microbiol Appl Sci. 2019; 8(1):1149-62. 2- Kunz Coyne AJ, El Ghali A, Holger D, Rebold N, Rybak MJ. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infect Dis Ther. 2022; 12:1-22. 3- Rouhi S, Ramazanzadeh R. Prevalence of blaOxacillinase-23and blaOxacillinase-24/40-type Carbapenemases in Pseudomonas aeruginosa Species Isolated From Patients With Nosocomial and Non-nosocomial Infections in the West of Iran. Iran J Pathol. 2018; 13(3):348. 4- Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens. 2022; 11(3):300. 5- Noori HG, Tadjrobehkar O, Moazamian E. Biofilm formation capacity of Pseudomonas aeruginosa is significantly enhanced by sub-inhibitory concentrations of Tomatidine. Gene Rep. 2022; 19:101570. 6- Ryder C, Byrd M, Wozniak DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol. 2007; 10(6):644-8. 7- Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol. 2012; 14(8):1913-28. 8- Pournajaf A, Razavi S, Irajian G, Ardebili A, Erfani Y, Solgi S, Yaghoubi S, Rasaeian A, Yahyapour Y, Kafshgari R, Shoja S. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infez Med. 2018; 26(3):226-36. 9- Tohidpour A, Najar Peerayeh S, Najafi S. Detection of DNA gyrase mutation and multidrug efflux pumps hyperactivity in ciprofloxacin resistant clinical isolates of Pseudomonas aeruginosa. JoMMID. 2013; 1(1):1-7. 10- Weinstein MP, editor. Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute; 2021. 11- Dogonchi AA, Ghaemi EA, Ardebili A, Yazdansetad S, Pournajaf A. Metallo-β-lactamase-mediated resistance among clinical carbapenem-resistant Pseudomonas aeruginosa isolates in northern Iran: A potential threat to clinical therapeutics. Tzu Chi Med J. 2018; 30(2):90. 12- Rodríguez-Martínez JM, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009; 53(11):4783-8. 13- Goli HR, Nahaei MR, Rezaee MA, Hasani A, Kafil HS, Aghazadeh M, et al. Role of MexAB-OprM and MexXY-OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and Intensive Care Unit isolates of Pseudomonas aeruginosa. J Infect Public Health. 2018; 11(3):364-72. 14- Azimi L, Fallah F, Karimi A, Shirdoust M, Azimi T, Sedighi I, et al. Survey of various carbapenem-resistant mechanisms of Acinetobacter baumannii and Pseudomonas aeruginosa isolated from clinical samples in Iran. Iran. J Basic Med Sci. 2020; 23(11):1396. 15- Ghadaksaz A, Fooladi AA, Hosseini HM, Amin M. The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. J Appl Biomed. 2015; 13(1):61-8. 16- Javiya VA, Ghatak SB, Patel KR, Patel JA. Antibiotic susceptibility patterns of Pseudomonas aeruginosa at a tertiary care hospital in Gujarat, India. Indian J Pharmacol. 2008; 40(5):230. 17- Sader HS, Huband MD, Castanheira M, Flamm RK. Pseudomonas aeruginosa antimicrobial susceptibility results from four years (2012 to 2015) of the international network for optimal resistance monitoring program in the United States. Antimicrob Agents Chemother. 2017; 61(3):e02252-16. 18- Goli HR, Nahaei MR, Rezaee MA, Hasani A, Kafil HS, Aghazadeh M. Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospitals, Iran. Iran J Microbiol. 2016; 8(1):62. 19- Sheikh AF, Shahin M, Shokoohizadeh L, Halaji M, Shahcheraghi F, Ghanbari F. Molecular epidemiology of colistin-resistant Pseudomonas aeruginosa producing NDM-1 from hospitalized patients in Iran. Iran J Basic Med Sci. 2019; 22(1):38. 20- Armin S, Fallah F, Azimi L, Kafil HS, Ghazvini K, Hasanzadeh S, Karimi A. Warning: spread of NDM-1 in two border towns of Iran. Cell Mol Biol. 2018; 64(10):125-9. 21- Gonçalves IR, Dantas RC, Ferreira ML, Batistão DW, Gontijo-Filho PP, Ribas RM. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Braz J Microbiol. 2017; 48:211-7. 22- Płókarz D, Czopowicz M, Bierowiec K, Rypuła K. Virulence Genes as Markers for Pseudomonas aeruginosa Biofilm Formation in Dogs and Cats. Animals. 2022; 12(4):422. 23- Gajdács M, Baráth Z, Kárpáti K, Szabó D, Usai D, Zanetti S, et al. No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics. 2021; 10(9):1134. 24- Sachdeva R, Sharma B, Sharma R. Evaluation of different phenotypic tests for detection of metallo-β-lactamases in imipenem-resistant Pseudomonas aeruginosa. J lab physicians. 2017; 9(04):249-53. 25- Galani I, Rekatsina PD, Hatzaki D, Plachouras D, Souli M, Giamarellou H. Evaluation of different laboratory tests for the detection of metallo-β-lactamase production in Enterobacteriaceae. J Antimicrob Chemother. 2008; 61(3):548-53. 26- Ranjan S, Banashankari GS, Babu PR. Evaluation of phenotypic tests and screening markers for detection of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa: A prospective study. Med J DY Patil Vidyapeeth. 2015; 8(5):599. 27- Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2003; 41(10):4623-9. 28- Pitout JD, Gregson DB, Poirel L, McClure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. J Clin Microbiol. 2005; 43(7):3129-35. 29- Gutiérrez O, Juan C, Cercenado E, Navarro F, Bouza E, Coll P, et al. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother. 2007; 51(12):4329-35. 30- Pourakbari B, Yaslianifard S, Yaslianifard S, Mahmoudi S, Keshavarz-Valian S, Mamishi S. Evaluation of efflux pumps gene expression in resistant Pseudomonas aeruginosa isolates in an Iranian referral hospital. Iran J Microbiol. 2016; 8(4):249.

2. Evaluating the Trends of Bloodstream Infections by Nonfermenting Gram Negative Bacilli among the Patients in a Tertiary Care Hospital of Western Part of India and its Antibiogram

3. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa

4. Rouhi S, Ramazanzadeh R. Prevalence of blaOxacillinase-23and blaOxacillinase-24/40-type Carbapenemases in Pseudomonas aeruginosa Species Isolated From Patients With Nosocomial and Non-nosocomial Infections in the West of Iran. Iran J Pathol. 2018;13(3).

5. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3