Abstract
Introduction: Studying trends in observed rates provides valuable information in terms of need assessment, planning of programs and development indicators of each country. The purpose of the present study was to apply the regression model and the Fourier series in terms of predicting the trends in growth and mortality rate of corona virus disease.Materials and methods: In this study, two linear analysis methods were used to predict the incidence and mortality rate of corona virus disease in Iran and China. The methods used are linear regression and Fourier transform. The data used were collected by referring to the official media of the mentioned countries, the general form of which is a time series of the incidence and mortality rate in recent days and the model implemented to estimate the incidence and mortality rate for the coming days. Python programming language version 3.7 is used to implement models.Results: The results of this study show that the rates of corona virus disease incidence and mortality are still increasing. Meanwhile, the Fourier transform-based analytical method is more accurate than the linear regression method and on the other hand, the accuracy of both algorithms for predicting mortality was much higher than the prediction rate. This indicates that the mortality rate is higher than that of its linearity over time. The other point is that based on the results of this study, however, linear methods are very suitable for future prediction, due to the nature of epidemic diseases whose growth chart is nonlinear, linear methods cannot be used to predict the rate and mortality used in distant times.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献