Predicción de resultados académicos con la aplicación nntool en Matlab utilizando redes neuronales artificiales

Author:

Capuñay Sanchez Dulce LuceroORCID,Incio Flores Fernando AlainORCID,Estela Urbina Ronald OmarORCID,Montenegro Camacho LuisORCID,Delgado Soto Jorge AntonioORCID,Cueva Valdivia JohnnyORCID

Abstract

En el 2018, Perú participó de la Evaluación Internacional de Estudiantes (PISA), donde se evidenciaron resultados desalentadores en los estudiantes de educación básica regular. En tal sentido, se consideró la predicción de resultados académicos como un instrumento de mejora del rendimiento escolar. El objetivo de esta investigación fue predecir el promedio anual de estudiantes del segundo grado de la Institución Educativa N°16093 en la provincia de Jaén-Perú, mediante el diseño e implementación de una red neuronal artificial (RNA). Para la recolección de datos de las variables que influyen en el promedio anual del estudiante, se elaboró un cuestionario de respuestas dicotómicas. En la validación y confiabilidad, se utilizó el criterio de juicio de expertos y la prueba Kuder-Richarson respectivamente, en el cual el coeficiente de confiabilidad obtenido en una prueba piloto aplicado a 15 estudiantes fue de 0.8359. En el software científico Matlab con la ayuda de la aplicación nntool, se diseñó la RNA formada por tres capas ocultas y una capa de salida. La RNA durante el entrenamiento, la validación y la prueba, registró un coeficiente de correlación ponderado de 0.967190, y un error cuadrático medio de 0.05011. El modelo neuronal implementado bajo las condiciones dadas logró una efectividad del 88.670% y 98.522%.  

Publisher

Universidad Peruana Union

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3