From Frequencies to Vectors

Author:

Rieder Bernhard1

Affiliation:

1. the University of Amsterdam, the Digital Methods Initiative

Abstract

This chapter investigates early attempts in information retrieval to tackle the full text of document collections. Underpinning a large number of contemporary applications, from search to sentiment analysis, the concepts and techniques pioneered by Hans Peter Luhn, Gerard Salton, Karen Spärck Jones, and others involve particular framings of language, meaning, and knowledge. They also introduce some of the fundamental mathematical formalisms and methods running through information ordering, preparing the extension to digital objects other than text documents. The chapter discusses the considerable technical expressivity that comes out of the sprawling landscape of research and experimentation that characterizes the early decades of information retrieval. This includes the emergence of the conceptual construct and intermediate data structure that is fundamental to most algorithmic information ordering: the feature vector.

Publisher

Amsterdam University Press

Reference62 articles.

1. Agre, P. E. (1997a). Computation and Human Experience. Cambridge: Cambridge University Press.

2. Anderson, C. (2008). The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired, 23 June. Retrieved from https://www.wired.com.

3. Beel, J., Gipp, B., Langer, S., and Breitinger, C. (2015). Research-Paper Recommender Systems: A Literature Survey. International Journal on Digital Libraries 17(4), 305-338. Birnbaum, D. J., Bonde. S., and Kestemont, M. (2017). The Digital Middle Ages: An Introduction. Speculum 92(S1), S1-S38.

4. Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research 3, 993-1022.

5. Blumer, H. (1962). Society as Symbolic Interaction. In A. M. Rose (ed.), Human Behavior and Social Processes (pp. 179-192). Boston: Houghton Mifflin.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3