Long-Term Strength Prediction of Wood Based Composites Using the Kinetic Equations

Author:

Kulman Sergiy1,Boiko Liudmyla1,Sedliačik Ján2

Affiliation:

1. Polissia National University

2. Technical University in Zvolen

Abstract

The existing behaviour models of the structures under constant load (creep) have a fairly wide forecast horizon and low accuracy. As a rule, they consider the transition from an undestroyed state of an element to a destroyed one, in one stage. The purpose of this study is to substantiate and develop a new approach to predicting long-term strength based on kinetic equations, which, in turn, should consider the multistage nature of the process of gradual destruction of structure elements. To achieve this purpose, the study solves the tasks of creating a multistage kinetic transition of individual structure elements from an initially elastic state to a viscoelastic state, and then to a fractured state. When describing this process, the authors employed the methods of formal kinetics and the theory of continuum damage mechanics, including the method of basic diagrams. Wood-based composites were used as the materials under study. Based on the results of the conducted full-scale and computational experiments, the study discovers that a mathematical model based on kinetic equations adequately describes the behaviour of the materials under study for long-term strength; the proposed two-stage model determines the forecast horizon much more accurately than the available one-stage models. The kinetic parameters that determine the rate of transition of a structural element from an elastic state to a viscoelastic state, and then to a destroyed state, were determined based on experimental base chart. The time to fracture was determined at three-point bending at a load equal to 70% of the flexural strength at temperatures of 20°C and 60°C, constant humidity RH 65% and moisture content MC 8%. When building control charts, the load increased by another 15%. The method allows narrowing the forecast horizon and determining the moment of transition of a structure from a stationary state to a blow-up regime with a higher accuracy

Publisher

Scientific Journals Publishing House

Reference22 articles.

1. Kachanov, L.M. (1958). On time of destruction under creep conditions. Izvestiia Akademii Nauk SSSR, Otdelenie Teckhnicheskikh Nauk, 8, 26-31.

2. Rabotnov, Yu.N. (1959). On the mechanism of long-term destruction. Strength Issues of Materials and Structures, 7, 5-7.

3. Astafiev, V.A., Radaev, Yu.N., & Stepanova, L.V. (2001). Nonlinear fracture mechanics. Samara: Samara University Publishing House.

4. Kondaurov, V.I. (1986). Energy approach to problems of continual destruction. Izvestiya, Physics of the Solid Earth, 6 17-22.

5. Kondaurov, V.I., & Fortov, V.E. (2002). Fundamentals of thermomechanics of condensed matter. Moscow: MIPT.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3