Soybean Productivity Depending On The Elements Of Organic Cultivation Technology In The Short-Term Crop Rotation Of Ukrainian Polissia

Author:

Didora Viktor1,Kluchevych Mykhailo1

Affiliation:

1. Polissia National University

Abstract

Over the past decades, intensive farming has operated under conditions of progressive degradation of the soil cover, maintaining production levels only at the expense of inadequate expenditure of non-renewable energy resources. The soils have acquired irreversible excessive compaction in the sub-arable part of the profile, and the dehumification has acquired a threatening status. The humus content in the soils of Ukraine decreased by almost 25%, and the average annual losses amount to 0.6-0.7 t/ha. Therefore, the search for ways to guarantee the reproduction of soil organic matter, reliable control and restoration of the optimal humus status is extremely relevant. The purpose of the study is to activate natural nitrogen-fixing systems using a mix of green manure and by-products of agricultural crops of short-term leguminous crop rotation. Field experiments were conducted on light grey soils during 2018-2020 in the experimental field of Polissia National University in a leguminous short-term rotation system. This study uses general scientific methods to establish the area of research, plan and lay experiments, conduct observations and analysis; visual – during the implementation of phenological observations; field – to study the relationship with abiotic factors; physiological – to determine the symbiotic effectiveness of preparations of biological origin. The technology of growing agricultural crops in leguminous crop rotation, which ensures the supply of raw materials of organic origin and the accumulation of air nitrogen by root nodule bacteria, has been theoretically substantiated and improved. It is established that one hectare of crop rotation area receives 6.8 tonnes of dry organic raw materials, which corresponds to 78.3 kg/ha of biological nitrogen. It is found out that inoculation of soybean seeds with a preparation of biological origin – Optimise 400, and treatment of soybean crops at BBCH microstages 60-63 with a complex microfertiliser on a chelated basis Nanovit Super+Magnesium Sulphate contributes to the active development of nodule bacteria, the number and weight of which is 81-89 pcs per plant and 510-572 kg/ha. Thus, the active symbiotic potential was 34.2-38.9 thousand kg/day. It is proved that during the growing season soybeans generate 357-400 kg/ha of biological nitrogen in the air, which provides a seed yield of 2.96-2.64 t/ha and leaves 117-160 kg/ha of nitrogen in the soil. The practical value of this study lies in the possibility of enriching the soil with organic matter and the biological form of nitrogen

Publisher

Scientific Horizons

Reference16 articles.

1. Furdychko, O.I. (2014). Agroecology. Kyiv: Ahrarna Nauka.

2. Ovsinskyi, I.E. (2010). New system of agriculture. Kyiv: Zerno.

3. Pantserev, I.V. (2015). Influence of technological methods of cultivation on symbiotic productivity of white lupine. Feed and Feed Production, 81, 141-145.

4. Chernilevskyi, M.S., Derecha, O.A., Kryvich, N.Ya., & Rybak, M.F. (2003). Green fertilizer – an important measure to increase soil fertility and crop yields in terms of biologization of agriculture. Zhytomyr: State Agroecological University.

5. Zhuravel, S.V., Kravchuk, M.M., Kropyvnytskyi, R.B., Klymenko, T.V., Trembitska, O.I., Radko, V.H., Nihorodova, S.A., Dyachenko, M.O., Zhuravel, S.S., & Polishchuk, V.O. (2020). Organic fertilizers. Zhytomyr: Zhytomyr National Agroecological University.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3