Navigating the Ethical Landscape: Implementing Machine Learning in Smart Healthcare Informatics

Author:

Sharma Animesh KumarORCID,Sharma RahulORCID

Abstract

The integration of Machine Learning (ML) into healthcare informatics holds immense promise, revolutionizing patient care and treatment strategies. However, as this technology advances, it brings forth ethical challenges crucial for careful navigation. ML offers unprecedented abilities to analyze vast healthcare data, leading to personalized medicine and improved outcomes. Yet, ethical concerns emerge, notably in privacy protection, algorithm bias, transparency, informed consent, and data quality. Transparency, explainability, and patient autonomy in decision-making processes are crucial to foster trust and accountability. Striking a balance between innovation and compliance, ensuring data quality, and promoting human-AI collaboration are essential. Addressing these challenges demands adherence to ethical frameworks, continuous monitoring, multidisciplinary governance, education, and regulatory compliance. To fully harness ML's potential in healthcare while upholding ethical standards, collaboration among stakeholders is imperative, ensuring patient welfare remains central amid technological advancements. Ethical considerations must be embedded at every stage of ML implementation to maintain an ethical, equitable, and patient-centered healthcare system.

Publisher

Indian Association of Preventive and Social Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3