Principles for assessing the genotoxicity of carbon nanomaterials in vitro (on the example of carbon nanotubes) (literature review)

Author:

Gabidinova Gulnaz Faezovna1ORCID,Timerbulatova Gyuzel Abdulkhalimovna2ORCID,Fatkhutdinova Liliya Minvagizovna1ORCID

Affiliation:

1. Kazan State Medical University

2. Kazan State Medical University; FBUZ «The Center of Hygiene and Epidemiology in the Republic of Tatarstan (Tatarstan)»

Abstract

Introduction. Genotoxicity of nanomaterials (NM) is becoming a major concern when investigating new NM for their safety. Each mutagen is considered to be potentially carcinogenic, therefore a genotoxicity assessment is necessary. However, a clear strategy for assessing the genotoxic effect of NM has not yet been developed. Material and methods. The material for the analysis have included literature sources from the bibliographic databases PubMed, Scopus, RSCI. Results. Physicochemical characterization of NM is carried out using high-resolution microscopic and light scattering methods. Before testing for genotoxicity, it is necessary to know the cytotoxicity of the tested NM in order to select the appropriate concentration range. The most important and significant tests are based on the cell viability. MTT assay is a colorimetric test that evaluates the metabolic activity of cells. In addition, viability can be determined using microscopy, flow cytometry, determination of lactate dehydrogenase. Genotoxicity evaluation can be carried out only after the preliminary steps. The strategy should include genotoxicity endpoints: DNA damage, gene mutations, chromosomal damage. The in vitro mammalian gene mutation test, usually performed using mouse lymphoma cells, detects a wide range of genetic damage, including gene deletions. The most common test for detecting chromosomal damage is an in vitro micronucleus assay. DNA strand breaks are most often assessed using the comet DNA assay. Conclusion. Compulsory stages in the study of the genotoxicity of nanomaterials should be preliminary studies, including physicochemical characterization and assessment of cytotoxicity, as well as the study of the endpoints of genotoxicity and potential mechanisms.

Publisher

Russian Register of Potentially Hazardous Chemical and Biological Substances

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3