Optimization of Fermentation Conditions for Cellulase Production by Trichoderma harzianum PK5 Obtained from Decaying Palm Kernel Cake

Author:

Antia, U. E. ,Adeleke, A. J. ,Stephen, N. U. ,Owowo, E. E. ,Uyanga, F. Z. ,Okon, J. E. ,Okon, O. G. ,Udoh, I. E.

Abstract

Study’s Novelty/ Excerpt This study successfully optimized cellulase production by Trichoderma harzianum PK5 using the One Factor at a Time (OFAT) approach, identifying copra meal and KNO3 as the best carbon and nitrogen sources. Optimal conditions included a pH of 4.0, 125% moisture concentration, 8% inoculum size, 30°C temperature, and a 7-day incubation period, yielding a high enzyme titre of 252.54±7.73 U/gds in solid-state fermentation. These findings highlight the potential of T. harzianum PK5 as a cost-effective source of cellulases for industrial applications. Full Abstract Cellulases are considered to be among the most important enzymes in the commercial market and in various industries. Their applications are widespread, leading to increased demand and high associated costs. This necessitates the search for more cost-effective cellulases from microorganisms. Therefore, the aim of this study was to optimize cellulase production by Trichoderma harzianum PK5 using the One Factor at a Time (OFAT) approach. The effects of carbon, nitrogen, and various environmental factors were studied in both submerged and solid-state fermentation setups by adjusting one factor at a time based on the optimal conditions established from the previous condition. Copra meal and KNO3 were identified as the best complex carbon and nitrogen sources, respectively, for cellulase production by Trichoderma harzianum PK5. The optimal pH of 4.0, moisture concentration of 125% (v/w), inoculum size of 8%, temperature of 30°C, and an incubation time of 7 days were determined as the optimal conditions for cellulase production by this isolate, resulting in an enzyme titre of 252.54±7.73 U/gds in solid-state fermentation. It was found that cellulase enzyme production by the isolate was constitutive. In conclusion, cellulase production by T. harzianum PK5 was significantly optimized using the OFAT approach

Publisher

Umaru Musa YarAdua University Katsina NG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3