Wind Power Forecasting with Machine Learning: Single and combined methods

Author:

Rosa J., ,Pestana S.,Leandro C.,Geraldes C.,Esteves J.,Carvalho D., , , , ,

Abstract

In Portugal, wind power represents one of the largest renewable sources of energy in the national energy mix. The investment in wind power started several decades ago and is still on the roadmap of political and industrial players. One example is that by 2030 it is estimated that wind power is going to represent up to 35% of renewable energy production in Portugal. With the growth of the installed wind capacity, the development of methods to forecast the amount of energy generated becomes increasingly necessary. Historically, Numerical Weather Prediction (NWP) models were used. However, forecasting accuracy depends on many variables such as on-site conditions, surrounding terrain relief, local meteorology, etc. Thus, it becomes a challenge to obtain improved results using such methods. This article aims to report the development of a machine learning pipeline with the objective of improving the forecasting capability of the NWP’s to obtain an error lower than 10%.

Publisher

AEDERMACP (European Association for the Development of Renewable Energies and Power Quality)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3