The swarm intelligence algorithms and their application for the educational data analysis

Author:

Dyulicheva Y. Yu.1ORCID

Affiliation:

1. V.I. Vernadsky Crimean Federal University

Abstract

The purpose of the paper is the investigation of the modern approaches and prospects for the application of swarm intelligence algorithms for educational data analysis, as well as the possibility of using of ant algorithm modifications for organizing educational content in adaptive systems for conducting project seminars.Materials and methods. The review of the modern articles on the educational data analysis based on swarm intelligence algorithms is provided; the approaches to solving problem of the optimal learning path construction (optimal organization of the learning objects) based on the algorithm and its modifications taking into account the students’ performance in the process of the optimal learning path construction are investigated; the application of particle swarm optimization and its modification based on Roccio algorithm for the reduction of curse dimension in the problem of the auto classifying questions; the application of ant algorithm, bee colony algorithm and bat algorithm for recommender system construction are studied; the prediction of students’ performance based on particle swarm optimization is researched in the article. The modification of ant algorithm for optimal organization of learning objects at projects seminars is proposed.Results. The modern approaches based on swarm intelligence algorithms to problem solving in educational data analysis are investigated. The various approaches to pheromones updating (their evaporation) when building the optimal learning path based on students’ performance data and search of group with “similar" students are studied; the abilities of the hybrid swarm intelligence algorithms for recommendation construction are investigated.Based on the modification of ant algorithm, the approach to the learning content organization at project seminars with individual preferences and students’ level of basic knowledge is proposed. The python classes are developed: the class for statistical data processing; the classfor modifica -tion of ant algorithm, taking into account the current level of knowledge and interest of student in studying a specific topic at the project seminar; the class for optimal sequence of the project seminars ’ topics for students. The developed classes allow creating the adaptive system that helps first year students with a choice of topics of project seminars.Conclusion. According to the results of the study, we can conclude about the effectiveness of swarm intelligence algorithms usage to solve a wide range of tasks connected with learning content and students’ data analysis in the e-learning systems and perspectives to hybrid approaches development based on swarm intelligence algorithms for realizing the adaptive learning systems on the paradigm of “demand learning".The results can be used to automate the organization of learning content during project seminars for the first-year students, when it is important to understand the basic level of knowledge and students’ interest in learning new technologies.

Publisher

Plekhanov Russian University of Economics (PRUE)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference24 articles.

1. Romero C., Romero J. R. & Ventura S. A survey on pre-processing educational data. Educational Data Mining. Cham: Springer; 2014. 29-64.

2. Castro F., Vellido A., Nebot A., Mugica F. Applying Data Mining Techniques to e-Learning Problems. In: Jain L.C., Tedman R.A., Tedman D.K. (eds) Evolution of Teaching and Learning Paradigms in Intelligent Environment. Studies in Computational Intelligence. Heidelberg: Springer, 2007; 62: 183-221. DOI: https://doi.org/10.1007/978-3-540-71974-8_8

3. A.V. Manjarres, L.G.M. Sandoval, M.J.S. Suarez Data Mining Techniques Applied in Educational Environments: Literature Review. Digital Education Review. 2018; 33: 235-266.

4. S. Lakshmi Prabha, Dr.A.R. Mohamed Shanavas Application of Educational Data mining techniques in e-Learning A Case Study. International Journal of Computer Science and Information Technologies. 2015; 6 (5): 4440-4443.

5. Atta-Ur-Rahman, K. Sultan, N. Aldhafferi A. Alqahtani Educational Data Mining for Enhanced teaching and learning . Journal of Theoretical and Applied Information Technology. 2018; 96; 14: 4417-4427.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formation of individual educational trajectory of university student based on modified ant colony optimization algorithm;Informatics and education;2024-08-25

2. C Language Programming System Based on Data Analysis Algorithm;Cyber Security Intelligence and Analytics;2023

3. Construction of English APP Self-learning Platform Based on Swarm Intelligence Algorithm;2022 International Conference on Artificial Intelligence of Things and Crowdsensing (AIoTCs);2022-10

4. Intelligent Repair System of Table Tennis Server Based on Data Analysis Algorithm;2022 International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS);2022-07

5. Swarm Intelligence Algorithm in the Evaluation System of English Reading Teaching Quality;2022 International Conference on Information System, Computing and Educational Technology (ICISCET);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3