Assessment of Anti-Carcinogenic Potential of Neem (<i>Azadirachta indica</i>) Leaf Extract Loaded Calcium Phosphate Nanoparticles against Experimentally Induced Mammary Carcinogenesis in Rats

Author:

Chavhan S. G.,Balachandran C.,Nambi A. P.,Raj G. Dhinakar,Vairamuthu S.

Abstract

Considering the need for alternative medicine in alleviation of tumors and use of nanotechnology in furthering the action of herbal/natural products, the present study was designed to evaluate the anti-carcinogenic potential of Neem leaf Extract (NE) loaded calcium phosphate nanoparticles (NE-CaNP) on 7, 12-Dimethylbenzanthracene (DMBA) induced mammary tumors in female Sprague-Dawley rats. Ultrastructurally, the NE-CaNP were smooth, spherical with a tendency to agglomerate and evenly distributed. The NE-CaNP had a mean diameter of 231.4 ± 89.2 nm and zeta potential of -31.3mV. The mean coupling efficiency of CaNP was 90-91 %. The experimental trial consisted of control, NE-CaNP control, DMBA, DMBA+NE and DMBA+NE-CaNP groups. The mean latency periods for occurrence of mammary tumor were significantly (P ≤ 0.05) increased in the DMBA+NE and DMBA+NE-CaNP groups compared to the DMBA group. The mean latency period in the DMBA+NE-CaNP group was significantly (P ≤ 0.05) higher than the DMBA+NE group. The mean tumor frequency, volume and weight were significantly (P ≤ 0.05) decreased in the DMBA+NE-CaNP group. Histopathologically, the number of benign lesions was found highest (47.54%) in DMBA+NE-CaNP group rats. The relative percent reduction in malignancy as compared to the DMBA group was 42.86% and 54.29% in the DMBA+NE and DMBA+NE-CaNP groups respectively. In conclusion, the neem leaf extract loaded calcium phosphate nanoparticles were found to have better anti-carcinogenic potential by significantly reducing the incidence, frequency, weight, volume, malignancy and increased the tumor latency period of DMBA induced mammary tumors in female Sprague-Dawley rats as compared to rats treated with neem extract alone. Findings of the present study suggested that the neem leaf extract loaded calcium phosphate nanoparticles (NE-CaNP) has immense anticancer potential in terms of reduction in tumor burden and malignancy.

Publisher

Informatics Publishing Limited

Subject

Health, Toxicology and Mutagenesis,Toxicology,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3