Optimization of Stability-Indicating HPLC Method for Analyzing Process Related Impurities of Penfluridol and Structural Elucidation of Stress Degradation Products by LCMS/MSucidation of Stress Degradation Products by LCMS/MS

Author:

Adilakshmi Beram,Rohini V. K.,Eswarlal T.,Prasanna Ch. Lakshmi,Anna Venkateswara Rao

Abstract

This study focused on the development of a simple and sensitive HPLC method for resolution and quantification of process-related impurities of penfluridol and further assessment of forced degradation behavior of penfluridol. The chromatographic separation was achieved on XTerra™ C18 (250×4.6 mm, 5.0μm) column and UV detection at 245nm. The mobile phase comprises of methanol and tetrahydrofuran in 55:45 (v/v) as solvent A and acetonitrile and tetrahydrofuran in 80:20 (v/v) as solvent B. The 60:40 (v/v) composition of solvent A and B were pumped isocratically at 1.0mL/min. In the proposed conditions, the retention time identified as 5.29 min for penfluridol, 4.51 min, 9.95 min and 7.64 min respectively for impurity 1, 2 and 3 with acceptable system suitability. The method produces sensitive detection limit of 0.008μg/mL for impurity 1, 2 and 0.004 μg/mL for impurity 3 with calibration range of 25-150 μg/mL for penfluridol and 0.025-0.150 μg/mL for impurities. The drug was exposed to different stressed conditions (acid, base, peroxide, thermal and UV light) according to ICH Q1A (R2) guidelines. The Degradation Products (DPs) formed during the stress study was characterized by LCMS/MS in ESI positive mode and the possible structures of five DPs with possible degradation pathways were proposed. The outcomes of other validation studies were likewise satisfactory and proven adequate for regular analysis of penfluridol and its process-related impurities in bulk drug and pharmaceutical dosage forms and can also applicable for evaluation of stress degradation mechanism of penfluridol.

Publisher

Informatics Publishing Limited

Subject

Health, Toxicology and Mutagenesis,Toxicology,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3