Protective Effect of L-Carnitine against Deltamethrin Induced Male Reproductive Toxicity in Adult Rats Exposed at their Prepubertal Stage

Author:

Thathapudi Daveedu,Yendluri Raja Jayarao,Adimulapu Anilkumar,Gunda Mahesh,Vadela Manohar,Sainath S. B.,Manohar P. R. V.

Abstract

The present study aims to investigate the protective role of L-Carnitine (LC) against Deltamethrin-induced testicular toxicity in male rats exposed during their early developmental period. DTM was administered at a dose of 6 mg/kg body weight to the prepubertal rat’s Post-Natal Day (PND) 23 rats through oral route and exposure was continued until they reach PND 90. After completion of the exposure period, male rats were assessed for reproductive endpoints. Deltamethrin exposure caused a significant reduction in testosterone production and decreased the sperm parameters such as sperm count, sperm motility, sperm viability and sperm membrane integrity. Deltamethrin intoxication also reduced the reproductive organs’ weight and testicular steroidogenic enzymes (3β-hydroxysteriod dehydrogenase and 17β-hydroxysteriod dehydrogenase) levels. Further DTM exposure induced the oxidative stress as evidenced by the significant reduction in the superoxide dismutase, catalase, and glutathione levels with significant elevation in the malondialdehyde. DTM also induced the significant sperm DNA damage. In addition, DTM exposure significantly declined the testosterone levels over the control group, indicating the impaired steroidogenesis. In addition to the compromised steroidogenesis DTM exposure also deteriorated the testicular architecture according to the histological observations. On the other hand, therapy with LC (100 mg/kg body weight) improved the biomass of reproductive organs, the features of the sperm, testicular steroidogenesis and testicular antioxidant enzymes levels. Concluding that DTM might disturb the testicular antioxidant level that eventually impaired the reproductive health of rats. However, LC supplementation mitigated the reproductive toxicity through its antioxidant property.

Publisher

Informatics Publishing Limited

Subject

Health, Toxicology and Mutagenesis,Toxicology,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3