Author:
Naika M. S. Mahadeva,Harishkumar T.
Abstract
Let b-(k) (n) denote the number of overpartition pairs of n where (i) consecutive parts di?er by a multiple of k + 1 unless the larger of the two is overlined, and (ii) the smallest part is overlined unless it is divisible by k+1. We prove many in?nite families of congruences modulo powers of 2 and 3 for b-(2) (n) and congruences modulo 4 and 5 for b-(4) (n). For example, for all n ? 0 and ?,? ? 0, b-(4)(4·34? ·52?(5n + i) + 34? ·52?)? 0 (mod 5),where i = 3,4.
Publisher
Informatics Publishing Limited
Reference12 articles.
1. C. Adiga, B. C. Berndt, S. Bhargava and G. N. Watson, Chapter 16 of Ramanujan’s Second Notebook:Theta functions and q-series, Mem. Amer. Math. Soc., 315 (1985), 1–91.
2. N. D. Baruah and K. K. Ojah, Partitions with designated summands in which all parts are odd, Integers, 15 (2015), #A9.
3. B. C. Berndt, Ramanujan’s Notebooks Part III, Springer-Verlag, New York, 1991.
4. K. Bringmann, J. Dousse, J. Lovejoy and K. Mahlburg, Overpartitions with restricted odd di?erences, Electron. J. Combin., 22 (3) (2015), #P.3.17.
5. S. Chern and L. J. Hao, Congruences for two restricted overpartitions, Proc. Indian Acad. Sci. (Math. Sci.), (2019), 129:31.