Author:
Andr-Pascal Abro Goh,Jean-Marc Bomisso Gossrin,Augustin Tour Kidjgbo,Adama Coulibaly
Abstract
In this paper, we numerically study a flexible Euler-Bernoulli beam with a force control in velocity and a moment control in rotating velocity. First, we show the existence and uniqueness of the weak solution using Faedo-Galerkin’s method with the intermediate spaces. Then, we use the finite elements method with the cubic Hermite polynomials for the approximation of (1.1)–(1.5) in space such that the semi-discrete scheme obtained is stable and convergent. In addition, an a-priori error estimate is obtained. Finally, we perform numerical simulations in order to validate this method.
Publisher
Informatics Publishing Limited
Reference17 articles.
1. Paul J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc., 21 (1969), 412–416.
2. Shahabaddin Ebrahimi Atani, The ideal theory in quotients of commutative semirings, Glasnik Matematicki, 42 (62)(2007), 301 - 308.
3. A. P. Goh Abro, J. M. Gossrin Bomisso, A. Kidjgbo Tour, and Adama Coulibaly, A Numerical Method by Finite Element Method (FEM) of an Euler-Bernoulli beam to Variable Coefficients, Advances in Mathematics: Scientific Journal, 9 (2020), 8485 - 8510.
4. H. T. Banks and I. G. Rosen, Computational methods for the identification of spatially varying stiffness and damping in beams, Theory and advanced technology, 3 (1987), 1 - 32.
5. M. Basson and N. F. J. Van Rensburg, Galerkin finite element approximation of general linear second order hyperbolic equations, Numer. Func. Anal. Opt. 34(9) (2013), 976 - 1000.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献