Design and Numerical Study of Serpentine Duct using Flow Controllers for Flow Characteristics Enhancement

Author:

R.P Yogesh Shankar,D Pavan

Abstract

In the current work, computational study has been carrying out on the both baseline serpentine duct to know the flow behaviour and baseline with vortex generator to know the effect of vortex generators on the flow properties of the duct. A set of vortex generators are chosen for the study, by keeping all other parameters constant. Here in current work, for modelling the duct and vortex generator CATIA V5 is used; to discretizing the geometry ICEM CFD is used. For the analysis, the computational fluid dynamics tool FLUENT is used, SST k-ù model available in the FLUENT is used for the computations, and the results of current work will be validated with experimental results and shows that they are converged. Use of vortex generator in the current work proved extremely effective in enforcing the active flow control. Results obtained in this work are to study the pressure recovery at the engine face. The results ensure that the current work on the baseline model of serpentine inlet duct and model with vortex generator comparison is well established in case of pressure recovery and decrease in engine face distortion. After comparing the result of both baseline duct and duct with vortex generator we are expecting at least 25-35% of pressure recovery at the engine face. In the present study significant improvements characterized by an improved pressure recovery and decrease in distortion are observed over the baseline model of serpentine duct for vortex generator model. This reduction in pressure loss and distortion enhances the engine performance of thrust and also improves the overall performance of the engine.

Publisher

Informatics Publishing Limited

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3