Single Step Transformation of Urea into Metal-Free g-C<sub>3</sub>N<sub>4</sub> Nanoflakes for Visible-Light Photocatalytic Degradation of Crystal Violet Dye

Author:

Nikitha M.,Kottam Nagaraju,Smrithi S. P.,Devendra Bharath K.,Prasannakumar S. G.,Prasanth G.

Abstract

The danger that dyes pose to the biosphere is a worry for the entire planet. So, it is essential to remove these colors using the appropriate methods from the aquatic system. The best and most efficient approach for removing colors from water and wastewater is photodegradation utilizing graphitic carbon nitride (g-C3N4). The photocatalytic activity of the g-C3N4 nanoflakes down the visible light was examined in the current work using crystal violet dye. Due to its high efficiency, visible light radiation is typically used to photodegrade dyes. The environmentally benign molecular precursor urea was employed to initiate a single-step pyrolysis procedure that yielded g-C3N4 nanoflakes. The efficiency of the urea conversion process was determined at 550 °C. X-ray diffraction analysis has confirmed the graphitic phase of the synthesized carbon nitride material. The layered structure of the sp2 hybridized carbon and nitrogen bonding characteristics is confirmed by FT-IR analysis. The synthesized g-C3N4 has a nanosheet like morphology according to HRTEM analysis. g-C3N4 showed enhanced photocatalytic activity resulting in 97 % mineralisation of Crystal Violet (CV) dye and also compared its efficacy with dye concentration. All photocatalytic behavior was analysed by using a UV–Visible spectrophotometer.

Publisher

Informatics Publishing Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3