Author:
Salma Umme,Nagesh H. M.,Azghar Pasha B.,Narahari N.
Abstract
For a graph G having no loops and parallel edges, a labeling on the vertex set of G,Ψ:V(G)→{1,2,…,α} is refers to α-labeling. Let ab∈G be an edge. Then the weight the edge ab is zΨ (ab)=Ψ(a)+Ψ(b). An α-labeling on the vertex set of G is refers to be an edge irregular α-labeling of G if zΨ (a)≠zΨ (b),where a≠b in G. The least number α for which the graph G has an edge irregular α-labeling is referred to the edge irregularity strength of G, written es(G). The edge irregularity strength of Mycielskian of paths and cycles is computed.
Publisher
Informatics Publishing Limited
Reference19 articles.
1. Chartrand G, Jacobson MS, Lehel J, Oellermann OR, Saba F. Irregular networks. Congressus Numerantium. 1988; 64:187-192.
2. Ahmad A, Al-Mushayt O, Baca M. On edge irregularity strength of graphs. Appl Math Comput. 2014; 243:607- 10. https://doi.org/10.1016/j.amc.2014.06.028
3. Lin W, Wu J, Lam PCB, Gu G. Several parameters of generalized Mycielskians. Discrete Appl Math. 2006; 154:1173-82. https://doi.org/10.1016/j.dam.2005.11.001
4. Ahmad A, Baca M, Nadeem MF. On the edge irregularity strength of Toeplitz graphs. Sci Bull Politeh Univ Buchar. 2018; 78:155-62.
5. Tarawneh I, Hasni R, Ahmad A. On the edge irregularity strength of corona product of graphs with paths. Appl Math E-Notes. 2016; 16:80-7.