Influence of Alloying Element and Ageing on Microstructure and Dry Sliding Wear Behaviour of Cu-Zn-xNi Alloy

Author:

A. N. Santhosh ,S. Aprameyan ,Suresh Erannagari ,Vasantha Kumar

Abstract

In this paper, we look at how different nickel concentrations (4, 8, and 12 percent) affect the microstructure, microhardness, and dry sliding wear behaviour of a Cu-Zn-xNi alloy. The alloy was created using a casting technique at 1100°C and a heat treatment method that included solution treatment at 600°C and ageing at 450°C for four hours each. Microstructure studies were performed on the developed alloys using a scanning electron microscope (SEM). To investigate alloy indentation resistance, an ASTM E384 microhardness test was performed. Tribological properties such as friction and wear were investigated using a pin on disc tribometer and a dry sliding wear test according to the ASTM G99 standard. SEM studies revealed α-phase (copper) and solid solution of zinc in cast alloys, while aged alloys revealed a similar structure but with the addition of Cu2NiZn precipitates. The microhardness values improved as the Ni content and ageing increased. The decrease in secondary dendrite arm spacing with increasing Ni content and ageing was attributed to the improvement. The coefficient of friction decreased as the load increased, but increased as the sliding velocity increased. However, as loads and sliding velocities increased, so did the wear rate. For the majority of loads and sliding velocities, the worn surface demonstrated abrasion as the dominant wear mechanism.

Publisher

Informatics Publishing Limited

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3