Energy Factor-Based Blast Design in Large Opencast Coal Mines

Author:

Sinha Manish,Mishra A. K.

Abstract

Large surface coal mines in produce millions of tons of coal per annum, moving millions of cubic meters of overburden to mine the coal.  Much of this volume is blasted in the form of benches, a common mining technique (Gustafsson, 1973). Blasting is a part of Large Opencast Coal Mine (LOCCM) operations, and is scheduled based on production requirements. With dragline pits, equipment size and operating parameters allow engineers to use tall benches and methods like cast blasting or production dozing to assist with moving blasted material. Changes in scale of equipment and speed of production scheduling have brought about a multi-dimensional shift in the planning process for drilling and blasting team at large surface coal mine operations. So, the problem is that while equipment scale and pace of planning have drastically changed over the last decade blast design and the explosive selection criteria has not changed significantly. Work done by eminent researchers such as Richard Ash and Calvin Konya set the standard for today’s scientific bench blast design practices. Recently, the explosive’s engineering community has largely occupied themselves with applying technology to subsets of the design problem – how to improve or measure fragmentation (M. Monjezi, 2009), how to use technologically advanced methods to design blasts (Y. Azimi, 2010) (P.D. Katsabani, 2005), the public’s perception of mining (Hoffman, 2013). Explosives research for surface coal mining has essentially ignored bench blasting; the industry has not notably recognized the fundamental differences in scale and operational tempo that separate large surface mine blast from regular quarry-scale bench blasting. There is a vast scope of research in the field for explosive energy-based design for better fragmentation with less risk.

Publisher

Informatics Publishing Limited

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

Reference17 articles.

1. Bond, F.C. 1952. The third theory of comminution. Trans. AIMM 193: 484.

2. Bond, F.C. & Whittney, B.B. 1959. The work index in blasting. Quarterly of the Colorado School of Mines 54(3): 77–82.

3. Central Electricity Authority, 2015. Growth of Electricity Sector in India from 1947-2015. Ministry of Power, India.

4. Cunningham CV. Keynote address—optical fragmentation assessment, a technical challenge. InMeasurement of Blast Fragmentation, Proceedings of the FRAGBLAST 1996 (Vol. 5, pp. 13-19).

5. Esen S, Bilgin HA, BoBo T. Effect of explosive on fragmentation. InThe 4th Drilling and Blasting Symposium, Ankara, Turkey 2000 (Vol. 6372).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3