Author:
Pandey Pankaj Kumar,Rawat Kamla,Bohidar H. B.
Abstract
DNA ionogels prepared by adding 1-ethyl-3-methylimidazolium chloride on low energy gamma irradiated DNA solution samples reveal non-trivial self-assembly. Variations in secondary structure and low-frequency gel rigidity modulus G0 captured this unique hitherto unexplored features of these gels. Interestingly, at higher radiation dose (0 to 100 Gy) samples could partially lose their initial rigidity. Dynamic light scattering revels dose dependent relaxation dynamics corresponding to ergodicity breaking time. In particular, viscosity and rheology showed that the time of gelation tgel, temperature of gelation Tgel and strength of gelation G0 are gamma ray dose dependent. DNA Ionogel melting with temperature shows self-assembled characteristics of this biomaterial. Gelation kinetics of ionizing radiation treated DNA strands have been studied in literature.
Publisher
Informatics Publishing Limited
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Surfaces and Interfaces