Some Results on Maxima and Minima of Real Functions of Vector Variables: A New Perspective

Author:

Maguiña B. M.Cerna,Lujerio Garcia Dik Dani,Pocoy Yauri Victor Alberto,Rodriguez Sabino Vladimir Yovanni,Leiva Bernuy Ruben Mario

Abstract

In this work, the extreme points of real vector variable functions are obtained without the use of the classical theory that involves the use of partial derivatives. We illustrate with several theorems and examples a new method that consists of establishing an appropriate link between the function to be optimized, its restrictions and the result, stating that: given \(n\) non-zero real numbers \(a_{1},a_{2},\cdots,a_{n}\in\mathbb{R}\), then there exists a unique \(\lambda\in\mathbb{R}\) such that: This relation is obtained by decomposing the Hilbert space \(\mathbb{R}^{n}\) as the direct sum of a closed subspace and its orthogonal complement. Since the dimension of the space \(\mathbb{R}^{n}\) is finite, this guarantees that any linear functional defined on the space \(\mathbb{R}^{n}\) is continuous, and this guarantees that the kernel of said linear functional is closed in the space \(\mathbb{R}^{n}\), therefore we have that the space \(\mathbb{R}^{n}\) breaks down, as the direct sum of the kernel of the continuous linear functional \(f\) and its orthogonal complement, that is: \(\mathbb{R}^{n}\,-\,\ker f\,\bigoplus\,\left[\,\ker f\,\right]^{\perp}\), where the dimension of \(\ker f\,-\,n\,-\,1\) and the dimension of \(\left[\,\ker f\,\right]^{\perp}\,-\,1\). Adding to the link found new definitions about the hierarchy of one variable in relation to another and the fact that if \(x_{1}^{2}+x_{2}^{2}+...+x_{n}^{2}\,-\,r^{2}\) then the \(\max\{x_{1}+x_{2}+\cdots+x_{n}\}\,-\,r\sqrt{n}\) and the \(\min\{x_{1}+x_{2}+\cdots+x_{n}\}\,-\,-r\sqrt{n}\) we solve the optimization problem without using classical theory.

Publisher

Qeios Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3