Effects of experimental CO2 enrichment on the PSII photochemical efficiency of Symbiodinium sp. in Acropora millepora

Author:

McNie Ashleigh,Breen Daniel,Vopel Kay

Abstract

Enrichment of seawater with CO2 decreases the concentration of the carbonate ion while increasing that of hydrogen and bicarbonate ions. We use pulse-amplitude-modulation (PAM) fluorometry to investigate whether, in the absence of warming, and in sub-saturating light, these changes affect the PSII photochemical efficiency of _Symbiodinium_ sp. in the reef-building coral _Acropora millepora_. We assessed this experimentally with 30-min-interval saturation pulse analyses at 25 °C, a daily peak in the intensity of the photosynthetically active radiation (PAR) at ~65 µmol quanta m–2 s–1, and a seawater _p_CO2 that we gradually increased over nine days from ~496 to ~1290 μatm by injection of CO2-enriched air. Nine 14-day time series, which, except one, were recorded at the growing apices of a coral branch, revealed diel oscillations in the PSII photochemical efficiency characterized by a steep nocturnal decrease followed by a steep increase and peak in the morning, a daily minimum at midday (∆F/Fm’,midday), and a daily maximum at the onset of darkness at 19:00 h (Fv/Fm,19:00 h). An inadvertent shift in the position of one of the PAM fluorometer measuring heads revealed differences between the basal part and the growing coral apices of a coral branch in ∆F/Fm’midday and Qm. In ambient seawater (Control) _Symbiodinium_ sp. exhibited a gradual decrease, over the course of the experiment, in ∆F/Fm’,midday, Fv/Fm,19:00 h, and the slope of the linear regression between the relative electron transport rate and the intensity of PAR (rETR/PAR). Although two of three successive experiments indicated that CO2 enrichment counteracted these trends, statistical analyses failed to confirm an influence of _p_CO2 on ∆F/Fm’,midday, Fv/Fm,19:00 h, and Qm, rendering this experiment inconclusive.

Publisher

Qeios Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3