Measurement Mechanics

Author:

Krechmer KenORCID

Abstract

"Measurement Mechanics" (MM) applies statistical mechanics to reframe representational measurement theory (probabilistic) and metrology (deterministic). This is shown to unify the different measurement theories and correlate the different formulations of measurement result deviation (i.e., uncertainty, standard deviation, variance, precision and accuracy) across the sciences. Following Euler (1765), MM identifies that repetitive measurements of an unchanged observable produce measurement result distributions relative to a reference or standard. Such repetitive measurement results (without noise or distortion) appear as a Gaussian distribution of probabilistic measurement result quantities (numerical values and units), not a single numerical value with an error distribution as current representational measurement theory indicates. MM treats these distributions not as errors, but as all the statistically possible sums of a measurement apparatus's interval values relative to a reference or standard. Fig. 1 identifies the frame of reference; Fig. 2 diagrams representational measurement theory; Fig. 3 diagrams how metrology relates to representational theory; and Fig. 4 proposes measurement mechanics. The result of the paper's development (eq. (8) on page 12) identifies that the proposed statistical measurement function converges to the commonly applied metrology measurement function when the numerical value is large. The ramifications to measurement theories and experiments are summarized in the three paragraphs below it.

Publisher

Qeios Ltd

Reference44 articles.

1. D. H. Krantz, et al, Foundations of Measurement, Academic Press, NYC, NY, 1971. This three volume work is considered to be the "magnum opus" on representational measurement theory by D. J. Hand, Measurement Theory and Practice, Arnold, London England, 2004, page 27.

2. International Vocabulary of Metrology (VIM), third ed., BIPM JCGM 200:2012, http://www.bipm.org/en/publications/guides/vim.html December 2022.

3. L. Euler, Elements of Algebra, Chapter I, Article I, #3. Third edition, Longman, Hurst, Rees, Orme and Co., London England, 1822. Original work published in German in 1765.

4. A. Lyon, Why are Normal Distributions Normal? British Journal of the Philosophy of Science, 65 (2014), 621–649.

5. D. H. Krantz, et al, page 27, 1.5.1 Error of measurement.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3