Robin's criterion on superabundant numbers

Author:

Vega Frank

Abstract

Robin's criterion states that the Riemann hypothesis is true if and only if the inequality \(\sigma(n) < e^{\gamma} \cdot n \cdot \log \log n\) holds for all natural numbers \(n > 5040\), where \(\sigma(n)\) is the sum-of-divisors function of \(n\), \(\gamma \approx 0.57721\) is the Euler-Mascheroni constant and \(\log\) is the natural logarithm. We require the properties of superabundant numbers, that is to say left to right maxima of \(n \mapsto \frac{\sigma(n)}{n}\). Let \(P_{n}\) be equal to \(\prod_{q \mid \frac{N_{r}}{6}} \frac{q^{\nu_{q}(n) + 2} - 1}{q^{\nu_{q}(n) + 2} - q}\) for a superabundant number \(n > 5040\), where \(\nu_{p}(n)\) is the \(\textit{p-adic}\) order of \(n\), \(q_{k}\) is the largest prime factor of \(n\) and \(N_{r} = \prod_{i = 1}^{r} q_{i}\) is the largest primorial number of order \(r\) such that \(\frac{N_{r}}{6} < q_{k}^{2}\). In this note, we prove that the Riemann hypothesis is true when \(P_{n} \geq Q\) holds for all large enough superabundant numbers \(n\), where \(Q = \frac{1.2 \cdot (2 - \frac{1}{8}) \cdot (3 - \frac{1}{3})}{(2 - \frac{1}{2^{19}}) \cdot (3 - \frac{1}{3^{12}})} \approx 1.0000015809\). We know that \(\prod_{q \mid \frac{N_{r}}{6}} (q^{\nu_{q}(n) + 2} - 1) \geq Q \cdot \prod_{q \mid \frac{N_{r}}{6}} (q^{\nu_{q}(n) + 2} - q)\) trivially holds for large enough superabundant numbers \(n\) and thus, the Riemann hypothesis is true.

Publisher

Qeios Ltd

Reference5 articles.

1. J.L. Nicolas, G. Robin, Highly Composite Numbers by Srinivasa Ramanu- jan. The Ramanujan Journal 1(2), 119–153 (1997). https://doi.org/10. 1023/A:1009764017495

2. G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypoth`ese de Riemann. J. Math. pures appl 63(2), 187–213 (1984)

3. On Robin’s criterion for the Riemann hypothesis

4. On Highly Composite and Similar Numbers

5. A. Hertlein, Robin’s Inequality for New Families of Integers. Integers 18 (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3