Non-dimensionalization of the Compressible Navier-Stokes Equation by Pressure Wavelength and Period revealing its Singularity

Author:

Wang ShishengORCID

Abstract

Fluid particles oscillating in compressible fluid field will produce a pressure (density) wave. The wave propagates in the field by a finite speed – the wave speed of c. Any function where the x and t dependence is of the form (kx - \(\omega\)t) (or of the form f(x-ct) and g(x+ct)) represents a traveling wave of some shape. The x and t are no longer independent variables, rather, they are inter-dependent. They are related by the wave propagating speed of c through a dimensionless scalar function ̶ wave phase function of \(\phi(x,t) = kx \pm \omega t,\) where space and time are nondimensionalized by wavelength (wave number) and period (frequency). All the inertial observers perceive the same dimensionless wave phase function, \(\phi(x,t)\), at a given point in space and time if they have relative motions. If the wavelength and period are picked out as a measuring unit to quantify the length and time interval, the physical values of the length and time interval must be correspondingly enlarged or shortened for different initial frames, to ensure the wave phase function to be an invariant dimensionless scalar function. The classical compressible Navier-stokes equation contains pressure and density terms, if it is non-dimensionalized by the pressure wavelength and period in an inertial frame; the resulting equation contains a Reynolds number, where the wavelength is its scaling length. Its value will change following the fluid particle motion, relative to rest frame (Lab frame); The wavelength will be shorter (frequency will be higher) if the fluid particle flows toward an observer. The flow will blow up when the flow velocity approaches wave propagation velocity. Furthermore, it shows mass-energy equivalence can be expressed as \(pV = mc^{2}\) in the co-moving reference frame (rest frame).

Publisher

Qeios Ltd

Reference5 articles.

1. Extensions to the Navier–Stokes equations

2. Hartmann Römer, Michael Forger, Elementare Feldtheorie: Elektrodynamik, Hydrodynamik, spezielle Relativitätstheorie; VCH Verlagsgesellschaft, (1993), ISBN: 3527290656, p.110.

3. Wolfgang Rindler, Relativity: Special, General, and Cosmological, p. 53, Oxford University Press (2001).

4. Einstein, Zur Elektrodynamik bewegter Körper. Annalen der Physik, Vol. 322, 10, 891-921, (1905).

5. J.D. Jackson, Classical Electrodynamics, p.363, John Wiley & Sons, Inc., (1962).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3