Dynamics of Three-Level Laser Pumped by Electron Bombardment

Author:

Alemu Menisha

Abstract

In this paper we have studied the statistical and squeezing properties of the cavity light generated by a three-level laser. In this quantum optical system, N three-level atoms available in an open cavity, coupled to a two-mode vacuum reservoir, are pumped to the top level by means of electron bombardment at constant rate. We have considered the case in which the three-level atoms and the cavity modes interact with the two-mode vacuum reservoir. Applying the solutions of the equations of evolution for the expectation values of the atomic operators and the quantum Langevin equations for the cavity mode operators, we have calculated the mean and variance of the photon number as well as the quadrature squeezing for the cavity light. In addition, we have shown that the presence of the spontaneous emission process leads to a decrease in the mean and variance of the photon number. We have observed that the two-mode cavity light is in a squeezed state and the squeezing occurs in the minus quadrature. In addition, we have found that the effect of the vacuum reservoir noise is to increase the photon-number variance and to decrease the quadrature squeezing of the cavity light. However, the vacuum reservoir noise does not have any effect on the mean photon number. Moreover, the maximum quadrature squeezing of the light generated by the laser, operating far below threshold, is found to be 37.5% below the vacuum-state level. In addition, our result indicates that the quadrature squeezing is greater for γ=0 than that for γ=0.4 for 0.01 < ra < 0.35 and is smaller for γ=0 than that for γ=0.4 for 0.35 < ra < 1.

Publisher

Qeios Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3