Abstract
There are several statements equivalent to the famous Riemann hypothesis. In 2011, Solé and Planat stated that the Riemann hypothesis is true if and only if the inequality \(\zeta(2) \cdot \prod_{q\leq q_{n}} (1+\frac{1}{q}) > e^{\gamma} \cdot \log \theta(q_{n})\) holds for all prime numbers \(q_{n}> 3\), where \(\theta(x)\) is the Chebyshev function, \(\gamma \approx 0.57721\) is the Euler-Mascheroni constant, \(\zeta(x)\) is the Riemann zeta function and \(\log\) is the natural logarithm. In this note, using Solé and Planat criterion, we prove that the Riemann hypothesis is true.
Reference7 articles.
1. David J Platt and Timothy S Trudgian, On the first sign change of θ(x) − x, Mathematics of Computation 85 (2016), no. 299, 1539–1547.
2. Raymond Ayoub, Euler and the zeta function, The American Mathematical Monthly 81 (1974), no. 10, 1067–1086.
3. Franz Mertens, Ein Beitrag zur analytischen Zahlentheorie., J. reine angew. Math. 1874 (1874), no. 78, 46–62.
4. YoungJu Choie, Nicolas Lichiardopol, Pieter Moree, and Patrick Solé, On Robin’s criterion for the Riemann hypothesis, Journal de Théorie des Nombres de Bordeaux 19 (2007), no. 2, 357–372.
5. Patrick Solé and Michel Planat, Extreme values of the Dedekind ψ function, Journal of Combinatorics and Number Theory 3 (2011), no. 1, 33–38.