Somatic evolution of Cancer: A new synthesis

Author:

Baig Ulfat,Kharate Rohini,Watve MilindORCID

Abstract

Cancers have been interpreted either as somatic evolution of cheater cells that escape replication regulation or alternatively as non-healing wounds. Both the interpretations have substantial support as well as glaring anomalies but the two have not been put together to make a coherent synthesis. We argue here that mechanisms and pathways to escape the normal regulation of cell proliferation do not need to evolve de novo. Mechanisms to override the normal regulation have already evolved for wound healing and tissue regeneration. Almost all of the hallmarks of cancer are also seen in the wound healing process. This suggests that cancer develops not by any de novo gain of function but by exaptation of pre-evolved wound healing functions. Somatic evolution that makes the wound healing triggers constitutive is not mutation limited but selection limited and the selective forces are dependent on the tissue microenvironment. Some mechanisms for such selection have been suggested. Many more need to be investigated. A series of mechanisms have evolved to minimize the risk of cancers which may fail in an altered lifestyle context. We support our synthesis with multiple lines of evidence and also make differential testable predictions. This evolutionary perspective challenges multiple prevalent ideas, suggests novel lines of research and also has translatable implications for cancer prevention.

Publisher

Qeios Ltd

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3