PLANT-GROWTH-PROMOTING AND ANTIFUNGAL ASSET OF INDIGENOUS DROUGHT-TOLERANT RHIZOBACTERIA ISOLATED FROM OLIVE (Olea europaea L.) RHIZOSPHERE

Author:

Ajdig MohammedORCID,Chouati TahaORCID,Rached BahiaORCID,Mbarki AhlamORCID,Ouchari LahcenORCID,Filali-Maltouf AbdelkarimORCID,Talbi ChouhraORCID,El Fahime ElmostafaORCID,Melloul MarouaneORCID

Abstract

Faced with global environmental challenges, the quest for sustainable food production has gathered momentum. While abiotic stresses adversely affect plant health and productivity, Verticillium wilt causes considerable yield losses worldwide, particularly in crops such as olive. Recently, drought-tolerant bacteria have been used to alleviate both abiotic stress and pathogen pressure in crops. In this context, our work focuses on the isolation of tolerant indigenous rhizobacteria to mitigate these challenges by investigating their role in biocontrol and abiotic stress tolerance. Thus, a total of 94 rhizobacterial strains were isolated from the rhizospheres of olive trees in southeastern Morocco and characterized to identify tolerant plant growth-promoting rhizobacteria that inhibit Verticillium dahliae. 24 strains demonstrated in vitro suppression of Verticillium dahliae Klebahn, and exhibited tolerance to different abiotic stresses (drought, salinity, and high temperature). In addition, they proved xerotolerant (Aw ≤ 0.91), halotolerant (≥10% NaCl), and thermotolerant (≥ 55°C) capabilities. Beyond, these isolates showcased multifaceted plant growth-promoting traits, such as phosphate solubilization and significant synthesis of essential bioactive compounds like siderophores, indole-3-acetic acid and hydrolytic enzymes. Evaluating outcomes, three standout rhizobacterial isolates emerged due to their exceptional stress tolerance, unique plant growth-promoting qualities, and potent antagonistic potential. Molecular analysis identified them as Bacillus paranthracis (OZ-60) and Bacillus licheniformis (OZ-48 and OZ-77) through 16S rRNA sequencing. Besides enhancing plant abiotic stress resistance, these isolates hold promise in bolstering the sustainability of olive cultivation and fortifying plant defenses against pathogens.

Publisher

Slovak University of Agriculture in Nitra

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3