Building archaeology informative modelling turned into 3D volume stratigraphy and extended reality time-lapse communication

Author:

Banfi FabrizioORCID,Brumana RaffaellaORCID,Landi Angelo GiuseppeORCID,Previtali MattiaORCID,Roncoroni Fabio,Stanga ChiaraORCID

Abstract

This paper describes the case study of the damaged church of St. Francesco in the hamlet of Arquata del Tronto (Italy) that was struck by the earthquake in 2016. The municipality commissioned the research to support the preliminary design of the preservation plan. The first digitisation level has been started from the richness of surveying data acquired from static and dynamic terrestrial laser scanning (TLS), and photogrammetry, overcoming challenging constraints due to the scaffolding covering the surfaces. The geometric survey allowed authors to acquire massively geometric and material information supporting the three-dimensional (3D) volume stratigraphic and the creation of the Heritage Building Information Modelling (HBIM). The paper proposes a shift from the Geographic Information System (GIS)-based analysis of the materials toward spatial HBIM management. Building Archaeology is turned into HBIM 3D volume stratigraphy, overcoming the bidimensional (2D) surface mapping, in favour of a 3D understanding of direct and indirect sources. Material mapping is added to HBIM 3D volume stratigraphy, and each stratigraphic unit (SU) has its proprieties. The 3D volume stratigraphic database has been designed to collect the data on the unit detection at three levels (direct sources data collection, indirect data documentation, the relation among the BIM object elements). A common data environment (CDE) has been set up to share the 3D volume informative models that can be accessed, and all the information gathered. The knowledge transfer using the eXtended reality (XR) has been devoted to the citizen and tourist fruition, enhancing the comprehension of difficult concepts like the SUs to support a better critical 3D reconstruction. It includes the phases of construction across time-lapse documentation that validates related information within the building archaeology informative models leaving spaces to the uncertainty and documenting the relationship established so far thanks to the direct and indirect sources. The result obtained is a live digital twin that can be continuously updated, which justifies the costs and time demanding of HBIM despite 2D drawings.Highlights: • 3D survey and scan-to-HBIM process for the creation of a digital twin were oriented to the preliminary design of the preservation plan of the church of St. Francesco in Arquata del Tronto (Italy). • Stratigraphy is investigated and oriented towards a digitisation process to share different levels of knowledge through new forms of digital-sharing such as Common Data Environment (CDE) and cloud-based BIM platform. • eXtended reality (XR) is the final tool to reach new levels of communication and a wider audience characterised by experts in the construction sector and virtual and non-expert tourists.

Publisher

Universitat Politecnica de Valencia

Subject

Computer Science Applications,Archeology,Archeology,Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3