LIF/Mie Droplet Sizing of Water Sprays from SCR System Injector using Structured Illumination

Author:

Kapusta Łukasz Jan1

Affiliation:

1. Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering

Abstract

Recent trends in SCR (Selective Catalytic Reduction) systems development increase requirements for UWS (UreaWater Solution) injection. Close-coupled SCR system designs decrease the distance available for water evaporation and urea decomposition. Due to that, much effort is put into static mixing elements design improvement and injection process enhancement. So far, most experimental studies on UWS spray formation were based on Mie scattering visualization using global illumination and shadowgraphy imaging. High speed imaging of Mie signal with global illumination allows to determine global spray parameters such as penetration and angle but does not give information on droplet sizes. Droplet size determination, due to relatively large droplets generated by SCR injectors, can be done with Mie scattering or backlight imaging methods. Then the visualized area becomes narrowed since high magnification is required. Determination of droplet size distribution across whole spray in such arrangement requires number of measurements. LIF/Mie (Laser Induced Fluorescence/Mie scattering) technique provides an attractive alternative for rapid determination of droplet size distribution across the whole spray. This method however suffers from multiple scattering effects which might affect droplet size distribution results even in relatively dilute sprays.In this study, LIF/Mie ratio distribution across sprays from commercial automotive injector for SCR systems was determined by simultaneous LIF and Mie detection using structured illumination. Moreover, the results were compared with conventional LIF/Mie imaging. Nd:YAG pulse laser was used as a light source. Second harmonic beam of 532 nm was used to illuminate the sprays. Instead of UWS pure water doped with Eosin Y was used. The results showed that conventional images exhibited much stronger background signal. Moreover, the conventional imaging was sensitive to reflections from experimental setup elements, specifically reflections from LIF camera filter. These two observations prove the importance of using SLIPI for LIF/Mie droplets sizing in sprays for SCR systems. At the same time the obtained results showed that under certain conditions (no accidental reflections in the background) conventional imaging provides similar LIF/Mie ratio as structured illumination. The results showed that the LIF/Mie ratio remains unchanged over the spray cloud. This suggests that SMD remains unchanged as well. The slight increase of LIF/Mie ratio far from the injector outlet could be caused by absence of small droplets due to lower momentum and thus lower penetration distance. This assumption however should be verified with PIVmeasurement.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.5031

Publisher

Universitat Politècnica València

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3