Transcritical mixing of sprays for multi-component fuel mixtures

Author:

Manin Julien1,Crua Cyril2,Pickett Lyle M.3

Affiliation:

1. Combustion Research Facility, Sandia National Laboratories, Livermore CA, USA Artium Technologies, 470 Lakeside Dr., Sunnyvale CA, USA

2. Advanced Engineering Centre, University of Brighton, Brighton BN2 4GJ, United Kingdom

3. Combustion Research Facility, Sandia National Laboratories, Livermore CA, USA

Abstract

The mixing of fuels with oxidizer has been an increasingly interesting area of research with new engine technologiesand the need to reduce emissions, while leveraging efficiency. High-efficiency combustion systems such as diesel engines rely on elevated chamber pressures to maximize power density, producing higher output. In such systems, the fuel is injected under liquid state in a chamber filled with pressurized air at high temperatures. Theoretical calculations on the thermodynamics of fuel mixing processes under these conditions suggest that the injected liquid can undergo a transcritical change of state. Our previous experimental efforts in that regard showed through high- speed imaging that spray droplets transition to fluid parcels mixing without notable surface tension forces, supporting a transcritical process. Only mono-component fuels were used in these studies to provide full control over boundary conditions, which prevented extrapolation of the findings to real systems in which multi-component fuels are injected. Multi-component fuels add another layer of complexity, especially when detailed experiments serve model development, requiring the fuels to be well characterized. In this work, we performed high-speed microscopy in the near-field of high-pressure sprays injected into elevated temperature and pressure environments. A reference diesel fuel and several multi-component surrogates were studied and compared to single component fuels. The results support that a transition occurs under certain thermodynamic conditions for all fuels. As anticipated, the transition from classical evaporation to diffusive mixing is affected by ambient conditions, fuel properties, droplet size and velocity, as well as time scales. Analogous to previous observations made with the normal alkane sprays, the behavior of the multi-component fuels correlate well with their bulk critical properties.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.5065

Publisher

Universitat Politècnica València

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3