Abstract
<p>Diferentes investigadores en hidroclimatología aplican técnicas basadas en autovectores para comprimir grandes volúmenes de información mientras conservan la estructura invariante de los datos originales. La presente investigación desarrolló una metodología que aplica una de estas técnicas, Análisis de Componentes Principales, a los elementos de variabilidad en series de tiempo hidroclimáticas y luego se identifican grupos o clústers mediante el método “k-means”. El resultado es un mapa regionalizado por variable. Finalmente se hace la intersección de estos mapas y obteniéndose áreas que presentan una estructura hidroclimática homogénea debido que las variables comparten su estructura de varianza. En el caso de estudio se evaluaron 8 variables para Colombia (9268 series de tiempo), obteniendo como resultado 26 regiones hidroclimáticas. Obtener regiones hidroclimáticamente homogéneas brinda la posibilidad de generar, entre otros, proyectos de adaptación al cambio climático de forma localizada con el fin de dar soluciones cuasi particulares que maximicen los resultados.</p><p> </p>
Publisher
Universitat Politecnica de Valencia
Reference48 articles.
1. Abadi, A.M., Rowe, C.M., Andrade, M. 2019. Climate regionalization in Bolivia: A combination of non-hierarchical and consensus clustering analyses based on precipitation and temperature. International Journal of Climatology, 40(10), 4408-4421. https://doi.org/10.1002/joc.6464
2. Aliaga, V.S., Ferrelli, F., Piccolo, M.C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37(S1), 1237-1247. https://doi.org/10.1002/joc.5079
3. Arthur, D., Vassilvitskii, S. 2007. k-means++: The advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, pp. 1027-1035. https://dl.acm.org/doi/10.5555/1283383.1283494
4. Badr, H., Zaitchik, B.F., Dezfuli, A.K. 2015. A tool for hierarchical climate regionalization. Earth Science Informatics, 8, 945-958. https://doi.org/10.1007/s12145-015-0221-7
5. Bradley, J. 1968. Distribution-Free Statistical Tests. Prentice-Hall, Englewood Cliffs, NJ, 283-310.