Abstract
In this paper, we study the behavior of some topological and cardinal properties of topological spaces under the influence of the Nτφ -kernel of a space X. It has been proved that the Nτφ-kernel of a space X preserves the density and the network π - weight of normal spaces. Besides, shown that the N-compact kernel of a space X preserves the Souslin properties, the weight, the density, and the π -network weight of normal spaces.
Publisher
Universitat Politecnica de Valencia
Reference20 articles.
1. A. V. Arkhangel'skii, An approximation of the theory of dyadic bicompacta, Dokl. Akad. Nauk SSSR, 184, no. 4 (1969), 767-770.
2. A. V. Arkhangel'skii, Topological Space of Functions, Mosk. Gos. Univ.,Moscow, 1989 (in Russian).
3. R. B. Beshimov, Some properties of the functor O_ β, J. Math. Sci. 133 (2006), 1599-1601. https://doi.org/10.1007/s10958-006-0070-5
4. R. B. Beshimov, D. N. Georgiou, and R. M. Zhuraev, Index boundedness and uniform connectedness of space of the G-permutation degree, Appl. Gen. Topol. 22, no. 2 (2021), 447-459. https://doi.org/10.4995/agt.2021.15566
5. R. B. Beshimov, and F. G. Mukhamadiev, Some cardinal properties of complete linked systems with compact elements and absolute regular spaces, Mathematica Aeterna 3, no. 8 (2013), 625-633.