Quantification of diesel injector dribble using 3D reconstruction from x-ray and DBI imaging

Author:

Crua Cyril1,Sechenyh Vitaliy2ORCID,Turner Jack1,Sykes Dan1,Duke Daniel J3,Swantek Andrew B3,Matusik Katarzyna E3,Kastengren Alan3,Powell Christopher3,Viera Alberto4,Payri Raul4

Affiliation:

1. University of Brighton

2. Loughborough University

3. Argonne National Laboratory

4. Universitat Politècnica de València

Abstract

Post-injection dribble is known to lead to incomplete atomisation and combustion due to the release of slowmoving, and often surface-bound, liquid fuel after the end of the injection event. This can have a negative effect on engine emissions, performance, and injector durability. To better quantify this phenomenon we present a new image processing approach to quantify the volume and surface area of ligaments produced during the end of injection, for an ECN ‘Spray B’ 3-hole injector. Circular approximation for cross-sections was used to estimate three-dimensional parameters of droplets and ligaments. The image processing consisted in three stages: edge detection, morphological reconstruction, and 3D reconstruction. For the last stage of 3D reconstruction, smooth surfaces were obtained by computation of the alpha shape which represents a bounding volume enveloping a set of 3D points. The object model was verified by calculation of surface area and volume from 2D images of figures with well-known shapes. We show that the object model fits non-spherical droplets and pseudo-cylindrical ligaments reasonably well. We applied our processing approach to datasets generated by different research groups to decouple the effect of gas temperature and pressure on the fuel dribble process. High-speed X-ray phase-contrast images obtained at room temperature conditions (297 K) at the 7-ID beamline of the Advanced Photon Source at Argonne National Laboratory, together with diffused back-illumination (DBI) images captured at a wide range of temperature conditions (293-900 K) by CMT Motores Térmicos, were analysed and comparedquantitatively.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4742

Publisher

Universitat Politècnica València

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3