Author:
Pulido Calvo Inmaculada,Roldán Cañas José,López Luque Rafael,Gutiérrez Estrada Juan Carlos
Abstract
La demanda de agua es la magnitud de referencia en la gestión óptima de los sistemas de distribución. En este trabajo se propone la estimación de la demanda en las próximas 24 horas en un sistema de distribución de agua para riego, y se utilizan, junto con los métodos tradicionales de predicción de regresión múltiple y de modelos univariantes de series temporales (ARIMA), las Redes Neuronales Computacionales (RNCs). Se dispone de los datos de las demandas diarias de agua de las campañas de riegos 1987/88, 1988/89 y 1990/91 de la zona regable de Fuente Palmera (Córdoba). Los modelos se establecen considerando la relación de los datos presentes y pasados de la demanda, aunque también se analiza la influencia de datos climáticos (temperatura máxima, temperatura media, temperatura mínima, precipitación, humedad relativa, horas de sol y velocidad del viento). Las mejores estimaciones se consiguen con la RNC que considera como variables de entrada las demandas y las temperaturas máximas de los dos días anteriores al de estimación.
Publisher
Universitat Politecnica de Valencia
Reference30 articles.
1. Descripción de los procesos de infiltración mediante redes neurales artificiales;ÁLVAREZ;Ingeniería del Agua,1996
2. BOX, G.E.P. y G.M. JENKINS (1976) Time series analysis: forecasting and control. Holden-Day, San Francisco, CA.
3. Approximation by superpositions of a sigmoidal function. Math;CYBENCO;Controls Signals and Systems,1989
4. COULBECK, B., S.T. TENNANT y C.H. ORR (1985) Development of a demand prediction program for use in optimal control of water supply. Systems Sci., 11: 59-66.
5. FRENCH, M.N., W.F. KRAJEWSKI y R.R. CUYKENDAL I (1992) Rainfall forecasting in space and time using a neural network. J. Hydrol., 137: 1-31.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献