Técnicas de predicción a corto plazo de la demanda de agua. Aplicación al uso agrícola

Author:

Pulido Calvo Inmaculada,Roldán Cañas José,López Luque Rafael,Gutiérrez Estrada Juan Carlos

Abstract

La demanda de agua es la magnitud de referencia en la gestión óptima de los sistemas de distribución. En este trabajo se propone la estimación de la demanda en las próximas 24 horas en un sistema de distribución de agua para riego, y se utilizan, junto con los métodos tradicionales de predicción de regresión múltiple y de modelos univariantes de series temporales (ARIMA), las Redes Neuronales Computacionales (RNCs). Se dispone de los datos de las demandas diarias de agua de las campañas de riegos 1987/88, 1988/89 y 1990/91 de la zona regable de Fuente Palmera (Córdoba). Los modelos se establecen considerando la relación de los datos presentes y pasados de la demanda, aunque también se analiza la influencia de datos climáticos (temperatura máxima, temperatura media, temperatura mínima, precipitación, humedad relativa, horas de sol y velocidad del viento). Las mejores estimaciones se consiguen con la RNC que considera como variables de entrada las demandas y las temperaturas máximas de los dos días anteriores al de estimación.

Publisher

Universitat Politecnica de Valencia

Subject

General Medicine

Reference30 articles.

1. Descripción de los procesos de infiltración mediante redes neurales artificiales;ÁLVAREZ;Ingeniería del Agua,1996

2. BOX, G.E.P. y G.M. JENKINS (1976) Time series analysis: forecasting and control. Holden-Day, San Francisco, CA.

3. Approximation by superpositions of a sigmoidal function. Math;CYBENCO;Controls Signals and Systems,1989

4. COULBECK, B., S.T. TENNANT y C.H. ORR (1985) Development of a demand prediction program for use in optimal control of water supply. Systems Sci., 11: 59-66.

5. FRENCH, M.N., W.F. KRAJEWSKI y R.R. CUYKENDAL I (1992) Rainfall forecasting in space and time using a neural network. J. Hydrol., 137: 1-31.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3